首页 | 本学科首页   官方微博 | 高级检索  
   检索      

菊花不同花色品种中花青素苷代谢分析
引用本文:孙卫,李崇晖,王亮生,戴思兰.菊花不同花色品种中花青素苷代谢分析[J].植物学通报,2010,45(3):327-336.
作者姓名:孙卫  李崇晖  王亮生  戴思兰
作者单位:1. 北京林业大学园林学院国家花卉工程技术研究中心,北京,100083;乌鲁木齐市植物园,乌鲁木齐,830011
2. 中国科学院植物研究所北京植物园,北京,100093;中国科学院研究生院,北京,100049
3. 中国科学院植物研究所北京植物园,北京,100093
4. 北京林业大学园林学院国家花卉工程技术研究中心,北京,100083
基金项目:国家自然科学基金,国家林业局林业公益性行业科研专项,中国科学院方向性项目 
摘    要:应用高效液相色谱和多级质谱联用技术(HPLC-ESI-MSn),分析菊花(Chrysanthemum×morifolium)白色、粉色、红色、紫色、红紫色和墨色6个色系共计82个品种中花青素苷合成过程的中间产物和最终产物,发现从白色、粉色、红色、紫色、红紫色到墨色花青素苷含量快速增加,分别为4.68、111.60、366.89、543.56、1220.36和2674.95μg·g-1,不同色系间花青素苷的含量差异显著(P〈0.01),花青素苷含量越高花色越深;墨色菊花品种中总类黄酮含量显著高于其它花色品种(P〈0.01),其它不同色系间总类黄酮含量差异不显著(P〉0.05);随着菊花花色变深,从柚皮素分支到圣草酚的代谢流,以及从圣草酚分支到矢车菊素苷的代谢流比例增加。花青素苷成分分析发现:菊花中只含有矢车菊素苷类化合物。根据花青素苷代谢成分分析结果绘制了菊花中花青素苷代谢路径图,即在菊花类黄酮代谢途径中只存在矢车菊素苷代谢分支途径;菊花不同色系在柚皮素和圣草酚2个关键代谢分支点上向不同方向代谢流的分配比例不同,造成花青素苷产物含量不同,导致不同花色。以上研究结果为菊花花色改良的分子育种提供了理论依据。

关 键 词:花青素苷  菊花  黄酮  花色  代谢途径

Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum
Wei Sun,Chonghui Li,Liangsheng Wang,Silan Dai.Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J].Chinese Bulletin of Botany,2010,45(3):327-336.
Authors:Wei Sun  Chonghui Li  Liangsheng Wang  Silan Dai
Institution:1College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China 2Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 3Urumqi Botanical Garden, Urumqi 830011, China; 4Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:We analyzed the metabolic intermediate and final products, including anthocyanins and flavones, in 82 cultivars of Chinese chrysanthemum (Chrysanthemum × morifolium) divided into 6 groups by color: white, pink, red, purple, reddish-purple and dark-red. High-performance liquid chromatography (HPLC) with a photodiode array detector (HPLC-PAD) and HPLC-electrospray ionization-mass spectrometry (HPLC-ESI-MSn) were used for qualitative and quantitative analysis of anthocyanin and flavone. The higher the cyanin accumulation in the chrysanthemum flower, the darker the color. The cyanin content in white, pink, red, purple, reddish-purple and dark-red flower groups was 4.68, 111.60, 366.89, 543.56, 1 220.36 and 2 674.95 μg·g–1, respectively, for a significant difference among groups (P0.01). Quantitative analysis revealed no significant difference among color groups in flavonoid content (P0.05), except for the dark-red group, which had notably higher content of flavonoids and anthocyanins than other groups (P0.01). The darker the flower color, the higher the ratios of metabolic flux from the naringenin to eriodicyol and from the eriodicyol to cyanins on the basis of lightness colorimetric values. Thus, the cyanin pathway is the only flower-color metabolic pathway in chrysanthemum, although three different pathways lead to different flower colors. We provide a metabolic flux figure on the anthocyanin metabolic pathway in chrysanthemum comparing anthocyanin content in different flower colors. The different ratios to cyanins from narigenins and eriodicyol are the crucial metabolic points that induce the diverse cyanin products in flowers and then lead to the various flower colors. These results provide a theoretical basis for molecular breeding to improve flower color in chrysanthemum.
Keywords:anthocyanin  chrysanthemum  flavone  flower color  metabolic pathway
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号