首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Calcium-Activated ATPases in Presynaptic Nerve Endings   总被引:7,自引:5,他引:2  
We studied the properties of calcium-activated ATPases present in preparations of isolated presynaptic nerve ending (synaptosome) and its subfractions from mouse brain. ATPase activity in the preparation was stimulated by Ca2+ and by Mg2+, but not by Na+ and K+, when each was added alone. The substrate specificities were found to be similar. The ATPases hydrolyzed only the high-energy phosphate bond and similar activity was exhibited for all nucleoside triphosphates tested (ATP, CTP, GTP, UTP). Moreover, the enzymes were insensitive to mitochondrial markers and to ouabain, but were inhibited by La3+. La3+ produced uncompetitive inhibition of Ca2+-ATPase in intact synaptosomes. Inhibition by La3+ was greatly increased after lysis of the synaptosomes, suggesting that the active sites of the enzymes may be on the cytosolic face of the membranes. The Ca2+-ATPase activity in synaptosomes was increased by increasing concentrations of external K+, suggesting that Ca2+ influx may be involved The Ca2+-ATPase in synaptosomal plasma membranes and synaptic vesicles had higher specific activities than those of intact synaptosomes and were activated, both in the presence and the absence of Mg2+, by Ca2+ concentrations approximating the intracellular level (10(-7) M). It is concluded that the nonmitochondrial synaptosomal Ca2+-ATPase may play an important role in the regulation of intracellular Ca2+.  相似文献   

2.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

3.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

4.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   

5.
The effects of dibutyryl cyclic AMP (db-cAMP) and dibutyryl cyclic GMP (db-cGMP) were tested on Ca2+-ATPase, Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities in lysed synaptosomes prepared from whole rat brains (minus cerebellum). At concentrations from 0.1 to 2.0 mM, db-cGMP produced a selective, concentration-dependent increase in Ca2+-ATPase activity. Both db-cGMP and db-cAMP slightly reduced Mg2+-ATPase activity, whereas neither compound had concentration-dependent effects on (Ca2+ + Mg2+)-ATPase activity. These findings suggest that the Mg2+-independent, Ca2+-ATPase activity in rat brain is regulated by a cyclic GMP-dependent process. Further, the data provide evidence that the Ca2+-ATPase activity in lysed synaptosomal membranes represents an enzyme that is distinguishable from both the Mg2+ -and (Ca2+ + Mg2+)-ATPase.  相似文献   

6.
The effect of a single administration of morphine sulfate (15 mg/kg, s.c. or 30 mg/kg, i.p., 30 min) on Ca2+-stimulated Mg2+-dependent ATPase activity was investigated in synaptosomal plasma membranes (SPM) prepared from rat cortex. Morphine produced a significant decrease in Ca2+,Mg2+-ATPase activity in synaptosomal fractions (SPM 1 + 2) known to contain a high density of opiate receptors and calmodulin-dependent Ca2+,Mg2+-ATPase. However, in another subpopulation (SPM 3) that contains fewer opiate receptors and less enzyme activity, no such decrease in the enzyme activity was observed after the opiate administration. The decrease in Ca2+,Mg2+-ATPase activity seen in SPM 1 + 2 was specifically antagonized by the opiate antagonist naloxone hydrochloride (2 mg/kg, s.c.) when given 15 min before morphine administration. Mg2+-ATPase was not altered either by morphine or by a naloxone-morphine combination. These findings give further evidence for the role of intracellular Ca2+ in mediating many of the acute effects of opiates.  相似文献   

7.
In the present study a polystyrene microtiter plate was tested as a support material for synaptic plasma membrane (SPM) immobilization by adsorption. The adsorption was carried out by an 18-h incubation at +4 degrees C of SPM with a polystyrene matrix, at pH 7.4. Evaluation of the efficiency of the applied immobilization method revealed that 10% protein fraction of initially applied SPM was bound to the support and that two SPM enzymes, Na(+)/K(+)-ATPase and Mg(2+)-ATPase, retained 70-80% activity after the adsorption. In addition, adsorption stabilizes Na(+)/K(+)-ATPase and Mg(2+)-ATPase, since the activities are substantial 3 weeks after the adsorption. Parallel kinetic analysis showed that adsorption does not alter significantly the kinetic properties of Na(+)/K(+)-ATPase and Mg(2+)-ATPase and their sensitivity to and mechanism of Cd(2+)- or Hg(2+)-induced inhibition. The only exception is the "high affinity" Mg(2+)-ATPase moiety, whose affinity for ATP and sensitivity toward Cd(2+) were increased by the adsorption. The results show that such system may be used as a practical and comfortable model for the in vitro toxicological investigations.  相似文献   

8.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

9.
Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton pumping activity of H+-ATPases in tonoplast vesicles were studied by acridine orange fluorescent quenching measured at 22 ℃. The proton pumping activity of ATPase was ATP-dependent with apparent Michaelis-Menten Constant (Km) for ATP about 0.65 mmol/L. The optimal pH for H+-ATPases activity was 7.5. The proton pumping activity of H+-ATPase could be initiated by some divalent cations, Mg2+ being highly efficient, much more than Fe2+; and Ca2+, Cu2+ and Zn2+ were inefficient under the experimental condition. The proton translocation could be stimulated by halide anions, with potencies decreasing in the order Cl-> Br->I->F-. The proton pumping activity was greatly inhibited by N-ethylmaleimide (NEM), N,N′-dicyclohexylcarbodiimide (DCCD), NO-3 and Bafilomycin A1, but not by orthovanadate and azide. These results demonstrated that the H+-ATPase in the tonoplast of Populus euphratica belonged to vacuolar type ATPase. This work was the first time that tonoplast-enriched vesicles were isolated from Populus euphratica cells.  相似文献   

10.
Sidedness of synaptic plasma membrane vesicles isolated from brain synaptosomes has been assessed by two distinct experimental approaches: first, analysis of (Na+ + K+)-ATPase, Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities before and after permeabilization of vesicles; second, analysis of Ca2+ fluxes via the Na+/Ca2+ exchanger, before and after modification of an imposed Na+ gradient by penetrating or nonpenetrating Na+ channel-modifying drugs. 0.05% saponin, which completely permeabilizes the vesicles, increases digitoxigenin-sensitive (Na+ + K+)-ATPase, basal Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities by 51.0, 47.4, and 83.6%, respectively. Saponin increases only the Vmax of the latter activity, the Km for Ca2+ (0.13 microM; the same as that for Ca2+-pumping) being unaltered by saponin. An increment of 20.5% in the Vmax of (Ca2+ + Mg2+)-ATPase activity with 10 microM A23187, reveals that the enzyme activity in nonpermeabilized vesicles is limited by the formation of a Ca2+ gradient. Thus, the saponin-induced increment in (Ca2+ + Mg2+)-ATPase due only to exposure of occluded sites (as opposed to Ca2+ gradient dissipation) is actually 52%, which is similar to values for both other ATPases, and suggests that 32-35% of plasma membranes exist in an inverted orientation. Vesicle orientation was independently assessed by the differential actions of tetrodotoxin (a membrane impermeant blocker) and veratridine (a membrane permeant agonist) on Na+-channel opening measured indirectly by dissipation of an imposed Na+ gradient utilized to drive a large 45Ca2+ accumulation via the Na+/Ca2+ exchanger. Tetrodotoxin reverses 35-44% of veratridine-mediated Na+ gradient-dissipation, the relative membrane-permeability of the two channel modifiers, suggesting that 56-65% of sealed vesicles are inverted. The concurrence of these two independent measurements of vesicle orientation reinforces their validity.  相似文献   

11.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

12.
Mg2+- or Ca2+-Activated ATPase in Squid Giant Fiber Axoplasm   总被引:1,自引:0,他引:1  
A divalent cation-activated ATPase in axoplasm from the squid giant axon is described. The enzyme requires Mg2+ or Ca2+, has a K+ optimum of 60 mM, and has a pH optimum of 7.5. Several nucleotide triphosphates other than ATP can serve as substrates. The enzyme is inhibited by excess ATP or Mg2+. The enzyme is enriched in a rapidly sedimenting fraction of the axoplasm, and is eluted in the exclusion volume of a Sepharose 4B column, suggesting that it is associated with a highly aggregated structure. Comparison of the properties of enzyme with those of myosin and Na+-K+-ATPase suggests that differs from both of these enzymes. The enzyme has many similarities to vertebrate nerve ATPases previously described. The demonstration of the presence of this ATPase in squid axoplasm proves the neuronal localization of the enzyme.  相似文献   

13.
The activities of Mg2+-ATPase (Mg2+-activated ATPase), (Ca2+ + Mg2+)-activated ATPase and (Na+ + K+)-activated ATPase have been determined in microsomes (microsomal fractions) obtained from rat myometrium under different hormonal conditions. Animals were either ovariectomized and treated for a prolonged period of time with 17 beta-oestradiol or progesterone, or myometria were obtained at day 21 of pregnancy. In each case the endometrium was carefully removed. The Mg2+-ATPase consists of two components: an inactivating labile component and a second constant component. The rate of ATP hydrolysis by the labile component of the Mg2+-ATPase declines exponentially as a function of time after adding the membranes to the assay medium; this inactivation is caused by the presence of ATP in the medium. This ATPase activity inhibited by ATP is catalysed by a labile enzyme and hence it gradually diminishes within a few hours, even when the microsomes are kept on ice. This labile component has the highest activity in microsomes from pregnant rats, a lower activity in progesterone-treated rats, and the lowest in 17 beta-oestradiol-treated rats. This component of the Mg2+-ATPase is not affected by 90 nM-oxytocin. The constant component of the Mg2+-ATPase must be ascribed to a different enzyme, which, in contrast with the labile component, is very stable and not affected by the hormonal status of the animal. This constant component of the Mg2+-ATPase is inhibited both by Ca2+-calmodulin, and by oxytocin in microsomes from pregnant and from progesterone-treated animals, whereas such inhibition does not occur in microsomes from 17 beta-oestradiol-treated animals. The activity of the (Na+ + K+)-activated ATPase is not dependent on the hormonal status of the animal. Myometrial microsomes present an ATP-dependent Ca2+ transport, irrespective of the hormonal condition, but only in microsomes obtained from rats treated with 17 beta-oestradiol, can a (Ca2+ + Mg2+)-activated ATPase activity be demonstrated. This activity can be stimulated by calmodulin.  相似文献   

14.
Synaptic plasma membranes isolated from rat brain exhibited a Ca2+ transport process that was strictly dependent on the presence of Mg2+ and activated by ATP hydrolysis. The characteristics of this ATP-activated transport process included a high affinity for Ca2+ and ATP with the Kact for these two substrates being 0.7 and 5 microM, respectively, and a lower affinity for Mg2+, Kact = 54 microM. The estimated constants for ATP-activated Ca2+ transport into synaptic membrane vesicles and the dependence of such transport on Mg2+ were indicative that such transport was related to the previously described high affinity (Ca2+ + Mg2+)-ATPase in synaptic membranes. An ATP- and Mg2+-dependent Ca2+ transport process with very similar kinetic characteristics was present also in a general microsomal membrane fraction obtained from brain tissue. The synaptic and microsomal membrane ATP-activated transport processes exhibited differences in their sensitivity to vanadate inhibition. Interaction with vanadate was fairly complex and best analyzed by a two-component model. Thus, the estimated Ki values for vanadate were 0.2 and 6.6 microM for the synaptic membranes and 0.7 and 13.8 microM for the microsomes. Since the microsomal membranes contain a substantial population of intraneuronal endoplasmic reticulum vesicles, the effects of vanadate on Ca2+ transport into intraneuronal membrane organelles, other than mitochondria, was determined in saponin-permeabilized synaptosomes. The estimated Ki values for vanadate inhibition of Ca2+ transport activity were 0.7 and 13 microM. The accumulation of Ca2+ into synaptic plasma membrane vesicles was readily reversed by activation of the Na+-Ca2+ exchange carrier, whereas the Ca2+ associated with intrasynaptosomal organelles was not affected by changes in [Na+]. Thus, there are at least two ATP-dependent Ca2+ transporting processes localized on two distinct neuronal membranes, one on the plasma membrane and the second on intraneuronal membranes.  相似文献   

15.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

16.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

17.
The antioxidant nordihydroguaiaretic acid (NDGA) inhibited the different sarco/endoplasmic reticulum Ca2+-ATPase isoforms found in skeletal muscle and blood platelets. For the sarcoplasmic reticulum, but not for the blood platelets Ca2+-ATPase, the concentration of NDGA needed for half-maximal inhibition was found to vary depending on the substrate used and its concentration in the assay medium. The phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase by ATP and by Pi were both inhibited by NDGA. In leaky vesicles, measurements of the ATP Pi exchange showed that NDGA increases the affinity for Ca2+ of the E2 conformation of the enzyme, which has low affinity for Ca2+. The effects of NDGA on the Ca2+-ATPase were not reverted by the reducing agent dithiothreitol nor by the lipid-soluble antioxidant butylated hydroxytoluene.  相似文献   

18.
In human red cell membranes the sensitivity to N-ethylmaleimide of Ca2+-dependent ATPase and phosphatase activities is at least ten times larger than the sensitivity to N-ethylmaleimide of (Na+ + K+)-ATPase and K+-activated phosphatase activities. All activities are partially protected against N-ethylmaleimide by ATP but not by inorganic phosphate or by p-nitrophenylphosphate. (ii) Protection by ATP of (Na+ + K+)-ATPase is impeded by either Na+ or K+ whereas only K+ impedes protection by ATP of K+-activated phosphatase. On the other hand, Na+ or K+ slightly protects Ca2+-dependent activities against N-ethylmaleimide, this effect being independent of ATP. (iii) The sensitivity to N-ethylmaleimide of Ca2+-dependent ATPase and phosphatase activities is markedly enhanced by low concentrations of Ca2+. This effect is half-maximal at less than 1 micron Ca2+ and does not require ATP, which suggests that sites with high affinity for Ca2+ exist in the Ca2+-ATPase in the absence of ATP. (IV) Under all conditions tested the response to N-ethylmaleimide of the ATPase and phosphatase activities stimulated by K+ or Na+ in the presence of Ca2+ parallels that of the Ca2+-dependent activities, suggesting that the Ca2+-ATPase system possesses sites at which monovalent cations bind to increase its activity.  相似文献   

19.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Papaverine (1-[(3,4-Dimethoxyphenyl) methyl]-6,7-dimethoxyisoquinoline) and nantenine (O-methyldomesticine) are chemically related isoquinoline alkaloids displaying similar dose-dependent sedative or convulsant effects, but seem to act differentially on synaptosomal membrane enzymes. Na+, K+-, Mg2+- and Ca2+-ATPase activities were inhibited by nantenine but not by papaverine, whereas acetylcholinesterase activity remained unchanged by nantenine but slightly enhanced by papaverine. Nantenine inhibited roughly both 20-50% Ca2+- and Mg2+-ATPase activities but 40-90% Na+, K+-ATPase activity. Kinetic analysis indicated that nantenine interacts with the substrate ATP for Ca2+-ATPase activity but that it competes with K+ for Na+, K+-ATPase activity. Given the roles of Na+, K+-ATPase and Ca2+-ATPase in cation transport and [Ca2+]i regulation, respectively, the inhibitory effect of nantenine upon these enzymes may explain its convulsant effect though not its sedative activity. The sedative action of both nantenine and papaverine is hardly attributable to an effect on the synaptosomal membrane enzymes assayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号