首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

2.
The effect of a single administration of morphine sulfate (15 mg/kg, s.c. or 30 mg/kg, i.p., 30 min) on Ca2+-stimulated Mg2+-dependent ATPase activity was investigated in synaptosomal plasma membranes (SPM) prepared from rat cortex. Morphine produced a significant decrease in Ca2+,Mg2+-ATPase activity in synaptosomal fractions (SPM 1 + 2) known to contain a high density of opiate receptors and calmodulin-dependent Ca2+,Mg2+-ATPase. However, in another subpopulation (SPM 3) that contains fewer opiate receptors and less enzyme activity, no such decrease in the enzyme activity was observed after the opiate administration. The decrease in Ca2+,Mg2+-ATPase activity seen in SPM 1 + 2 was specifically antagonized by the opiate antagonist naloxone hydrochloride (2 mg/kg, s.c.) when given 15 min before morphine administration. Mg2+-ATPase was not altered either by morphine or by a naloxone-morphine combination. These findings give further evidence for the role of intracellular Ca2+ in mediating many of the acute effects of opiates.  相似文献   

3.
本文以豚鼠和大白鼠心肌肌浆网膜(SR)Ca~(2+)-ATPase的活力,心肌质膜(SL)(Ca~(2+)Mg~(2+))-ATPase的活力和电子显微镜的方法探索克山病病区粮中低硒与心肌细胞钙转运调控的共系,实验结果为硒对克山病有预防作用的观点提供了新的理论依据,并进一步支持了“克山病是一种心肌线粒体病”的观点。  相似文献   

4.
The properties of Ca2+-activated and Mg2+-activated ATPases of nerve endings from mouse brain were investigated. Ca2+ and Mg2+ each can activate ATP hydrolysis in synaptosomes and its subfractions. Both Ca2+-ATPase and Mg2+-ATPase exhibit high and low affinity for their respective cations. At millimolar concentrations of Ca2+ or Mg2+, several nucleoside triphosphates could serve as substrate for the two enzymes and their specific activities were about three to four times higher in synaptic vesicles than in synaptosomal plasma membranes (SPM). Both in SPM and in synaptic vesicles the relative activity in the presence of Ca2+ was in the order of CTP greater than UTP greater than GTP = ATP, but with Mg2+ the activity was higher with ATP than with the other three triphosphates. Mg2+-ATPase was more active than Ca2+-ATPase in SPM, but in synaptic vesicles the two enzymes exhibited similar activity. Kinetic studies revealed that Mg2+-ATPase was inhibited by excess ATP and not by excess Mg2+. The simultaneous presence of Na+ + K+ stimulated Mg2+-ATPase and inhibited Ca2+-ATPase activity in intact synaptosomes and SPM. The stimulation of Mg2+-ATPase by Na+ + K+ was further increased by increasing Mg2+ concentration and was inhibited by Ca2+ and by ouabain. When Ca2+ and Mg2+ are present together in SPM or synaptic vesicles, the total Pi liberated by the two cations may either increase or decrease, depending on their relative concentrations. Kinetic analyses indicate that Ca2+ and Mg2+ bind independently to the enzyme alone or together at different sites. The results suggest that Ca2+-ATPase and Mg2+-ATPase in SPM or synaptic vesicles may be separate and distinct systems.  相似文献   

5.
It has been previously shown that local anesthetics inhibit the total Ca2+, Mg2(+)-ATPase activity of synaptosomal plasma membranes. We have carried out kinetic studies to quantify the effects of these drugs on the different Ca2(+)-dependent and Mg2(+)-dependent ATPase activities of these membranes. As a result we have found that this inhibition is not altered by washing the membranes with EDTA or EGTA. We have also found that the Ca2(+)-dependent ATPase activity is not significantly inhibited in the concentration range of these local anesthetics and under the experimental conditions used in this study. The inhibition of the Mg2(+)-dependent ATPase activities of these membranes was found to be of a noncompetitive type with respect to the substrate ATP-Mg2+, did not significantly shift the Ca2+ dependence of the Ca2+, Mg2(+)-ATPase activity, and occurred in a concentration range of local anesthetics that does not significantly alter the order parameter (fluidity) of these membranes. Modulation of this activity by the changes of the membrane potential that are associated with the adsorption of local anesthetics on the synaptosomal plasma membrane is unlikely, on the basis of the weak effect of membrane potential changes on the Ca2+,Mg2(+)-ATPase activity. It is suggested that the local anesthetics lidocaine and dibucaine inhibit the Ca2+, Mg2(+)-ATPase of the synaptosomal plasma membrane by disruption of the lipid annulus.  相似文献   

6.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Many biochemical effects of local anesthetics are expressed in Ca2+-dependent processes [Volpi M., Sha'afi R.I., Epstein P.M., Andrenyak P.M., and Feinstein M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 795-799]. In this communication we report that local anesthetics (dibucaine, tetracaine, lidocaine, and procaine and the analogue quinacrine) inhibit the Ca2+-dependent and the Mg2+-dependent ATPase activity of rat brain synaptosomes and of membrane vesicles derived from them by osmotic shock. This inhibition is induced by concentrations of these drugs close to their pharmacological doses, and a good correlation between K0.5 of inhibition and their relative anesthetic potency is found. The Ca2+-dependent ATPase is more selectively inhibited at lower drug concentrations. The physiological relevance of these findings is discussed briefly.  相似文献   

8.
Ghost membranes prepared from human erythrocytes exhibit 2 distinct (Ca+Mg)-ATPase1 activities (Quist and Roufogalis, Arch Biochem Biophys 168:240, 1975). (Ca+Mg)-ATPase activity dependent on a water soluble protein fraction is selectively lost from ghost membranes during preparation of vesicles under low ionic strength, slightly alkaline conditions. In this study, the Ca2+ dependence of the remaining membrane bound (Ca+Mg)-ATPase activity and ATP-dependent Ca uptake in vesicles were compared. The C2+ activation curves for (Ca+Mg)-ATPase activity and Ca uptake into vesicles were parallel over a Ca2+ range of 0.3–330 μM, and both curves have 2 apparent KA values for Ca2+ of 0.45 and 100 μM. Addition of a concentrated soluble protein fraction containing predomintly spectrin to the vesicles increased (Ca+Mg)-ATPase activity over twofold but did not affect the rate of Ca uptake. These findings suggest that the (Ca+Mg)-ATPase activity remaining in vesicles after extraction of the water soluble proteins is associated with the Ca pump whereas (Ca+Mg)-ATPase activity dependent on the soluble protein fraction is associated with some other function.  相似文献   

9.
The effect of regucalcin, a calcium-binding protein, on ATP-dependent Ca2+ transport in the basolateral membranes isolated from rat kidney cortex was investigated. The prepared membranes were in inside-out oriented and membrane vesicles. Ca2+-ATPase activity in the basolateral membranes was progressively elevated by increasing concentrations of regucalcin (10-8 to 10-6 M) in the reaction mixture. This increase was dependent on Ca2+ addition. The activatory effect of regucalcin on the enzyme is inhibited by the presence of digitonin (5 × 10-6%) which can solubilize the membranous lipids. Moreover, the regucalcin effect was clearly abolished by the presence of vanadate (0.1 mM) or N-ethylmaleimide (5.0 mM). However, the effect of calmodulin (6 × 10-7 M) to increase Ca2+-ATPase activity was not significantly inhibited by vanadate or N-ethylmaleimide, indicating that the action mode of regucalcin differs from that of calmodulin. Also, the activatory effect of regucalcin on Ca2+-ATPase was appreciably inhibited by addition of dibutyryl cAMP (10-5 and 10-3 M), while inositol 1,4,5-trisphosphate (10-7 and 10-5 M) had no effect. Dibutyryl cAMP itself did not have an effect on the enzyme activity. Furthermore, the 45Ca2+ uptake by the basolateral membranes was clearly increased by the presence of regucalcin (10-7 and 10-6 M). This increase was completely blocked by the presence of vanadate (0.1 mM), N-ethylmaleimide (5.0 mM) or dibutyryl cAMP (10-4 and 10-3 M) in the reaction mixture. These results clearly demonstrate that regucalcin, which is expressed in rat kidney cortex, can increase Ca2+-ATPase activity and Ca2+ uptake in the basolateral membranes. Regucalcin may play a cell physiologic role as an activator in the ATP-dependent Ca2+ pumps in the basolateral membranes from rat kidney cortex.  相似文献   

10.
11.
The role of regucalcin, which is a regulatory protein in intracellular signaling, in the regulation of Ca(2+)-ATPase activity in the mitochondria of brain tissues was investigated. The addition of regucalcin (10(-10) to 10(-8) M), which is a physiologic concentration in rat brain tissues, into the enzyme reaction mixture containing 25 microM calcium chloride caused a significant increase in Ca(2+)-ATPase activity, while it did not significantly change in Mg(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing mitochondrial Ca(2+)-ATPase activity was completely inhibited in the presence of ruthenium red (10(-7) M) or lanthanum chloride (10(-7) M), both of which are inhibitors of mitochondrial uniporter activity. Whether the effect of regucalcin is modulated in the presence of calmodulin or dibutyryl cyclic AMP (DcAMP) was examined. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not significantly enhanced in the presence of calmodulin (2.5 microg/ml) which significantly increased the enzyme activity. DcAMP (10(-6) to 10(-4) M) did not have a significant effect on Ca(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not seen in the presence of DcAMP (10(-4) M). Regucalcin levels were significantly increased in the brain tissues or the mitochondria obtained from regucalcin transgenic (RC TG) rats. The mitochondrial Ca(2+)-ATPase activity was significantly increased in RC TG rats as compared with that of wild-type rats. This study demonstrates that regucalcin has a role in the regulation of Ca(2+)-ATPase activity in the brain mitochondria of rats.  相似文献   

12.
Calcium is actively transported into intracellular organelles and out of the cytoplasm by Ca2+/Mg2+-ATPases located in the endoplasmic reticulum and plasma membranes. We studied the effects of aluminum on calcium transport in the adult rat brain. We examined 45Ca-uptake in microsomes and Ca2+-ATPase activity in microsomes and synaptosomes isolated from the frontal cortex and cerebellum of adult male Long-Evans rats. ATP-dependent45Ca-uptake was similar in microsomes from both brain regions. The addition of 50-800 μM AICI3 resulted in a concentration-dependent inhibition of 45Ca-uptake. Mg2+-dependent Ca2+-ATPase activity was significantly lower in synaptosomes compared to microsomes in both frontal cortex and cerebellum. In contrast to the uptake studies, AICI3 stimulated Mg2+-dependent Ca2+-ATPase activity in both microsomes and synaptosomes from both brain regions. To determine the relationship between aluminum and Mg2+, we measured ATPase activity in the presence of increasing concentrations of Mg2+ or AICI3. Maximal ATPase activity was obtained between 3 and 6 mM Mg2+. When we substituted AICI3 for Mg2+, ATPase activity was also stimulated in a concentration-dependent manner, but to a greater extent than with Mg2+. One interpretation of these data is that aluminum acts at multiple sites to displace both Mg2+ and Ca2+, increasing the activity of the Ca2+-ATPase, but disrupting transport of calcium.  相似文献   

13.
吲哚丁酸通过蛋白磷酸化激活湖北海棠根系Ca2+-ATP酶   总被引:3,自引:2,他引:1  
以湖北海棠(Malus hupehensis Rhed.)实生苗为试材,通过在砂培液中加入吲哚丁酸(IBA)和蛋白激酶抑制剂3,3’,4’,5,7-五羟黄酮(quercetin)研究了IBA对根系膜蛋白磷酸化和Ca2 -ATPase活性的影响.试验表明根系膜蛋白磷酸化反应主要发生在丝氨酸残基上100 μmol/L的IBA使蛋白激酶和Ca2 -ATPase活性在2~3h内升高数十倍,之后很快下降,蛋白激酶活性变化明显早于Ca2 -ATPase;蛋白激酶抑制剂quercetin不仅抑制根系膜蛋白的磷酸化,也显著削弱IBA对Ca2 -ATPase的激活作用.结果显示,在对IBA响应中Caa2 -ATPase是信号转导途径中的成员,IBA可能通过蛋白磷酸化激活根系Ca2 -ATPase而起作用.  相似文献   

14.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

15.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

16.
Outer nuclear membrane is endowed with a SERCA type Ca(2+)-ATPase which pumps calcium into the nuclear envelope lumen and creates calcium stores. Variation in this calcium pool, among other things, regulates nuclear transport. The transport of Nuclear Localization Signal (NLS)-containing molecules into the nucleus is well established. Intermediate size molecules lacking an NLS translocate to the nucleus and its mechanism remains obscure. It is observed here that the treatment of HEK 293 cells in culture with dibutyryl cyclic AMP (db-cAMP) or forskolin (FK) triggered transport of Calcium Green 10 kDa dextran into the nucleus. Under similar conditions Fluo-3-AM accumulated around the nuclei. cAMP-dependent protein kinase phosphorylated 105 kDa nuclear Ca(2+)-ATPase (NCA) which served as a trigger for NLS-independent transport into the nucleus.  相似文献   

17.
Intraneuronal calcium ([Ca(2+)](i)) regulation is altered in aging brain, possibly because of the changes in critical Ca(2+) transporters. We previously reported that the levels of the plasma membrane Ca(2+)-ATPase (PMCA) and the V(max) for enzyme activity are significantly reduced in synaptic membranes in aging rat brain. The goal of these studies was to use RNA(i) techniques to suppress expression of a major neuronal isoform, PMCA2, in neurons in culture to determine the potential functional consequences of a decrease in PMCA activity. Embryonic rat brain neurons and SH-SY5Y neuroblastoma cells were transfected with in vitro--transcribed short interfering RNA or a short hairpin RNA expressing vector, respectively, leading to 80% suppression of PMCA2 expression within 48 h. Fluorescence ratio imaging of free [Ca(2+)](i) revealed that primary neurons with reduced PMCA2 expression had higher basal [Ca(2+)](i), slower recovery from KCl-induced Ca(2+) transients, and incomplete return to pre-stimulation Ca(2+) levels. Primary neurons and SH-SY5Y cells with PMCA2 suppression both exhibited significantly greater vulnerability to the toxicity of various stresses. Our results indicate that a loss of PMCA such as occurs in aging brain likely leads to subtle disruptions in normal Ca(2+) signaling and enhanced susceptibility to stresses that can alter the regulation of Ca(2+) homeostasis.  相似文献   

18.
Regulatory role of E-NTPase/NTPDase in fat/CD36-mediated fatty acid uptake   总被引:1,自引:0,他引:1  
Fatty acid translocase (FAT)/CD36-mediated long-chain fatty acid uptake in human umbilical vessel endothelial cells is associated with as yet uncharacterized translocase activity. The molecular mechanism of its function is not yet understood. Numerous attempts to purify rat cardiac sarcolemmal E-NTPase (an integral membrane protein also referred to as ecto-Ca(2+)/Mg(2+)ATPase) have revealed a complete amino acid sequence identity for FAT/CD36 protein. The most striking observation is that purified CD36 from human platelets shows significant E-NTPase activity. In view of recent progress in understanding CD36 functional properties, an attempt is made in this article to illustrate the point that association of E-NTPase (possibly extracellular Ca(2+)/Mg(2+)nucleotide triphosphate diphosphohydrolase) activity with CD36 may be of potential functional significance.  相似文献   

19.
Kinetic Characterization of Ca2+ Transport in Synaptic Membranes   总被引:2,自引:0,他引:2  
Lysed synaptosomal membranes were prepared from brain cortices of HA/ICR Swiss mice, and the ATP-stimulated Ca2+ uptake, Ca2+-stimulated Mg2+-dependent ATPase activity, and the Ca2+-stimulated acyl phosphorylation of these membranes were studied. The Km values for free calcium concentrations ([Ca2+]f) for these processes were 0.50 microM, 0.40 microM, and 0.31 microM, respectively. Two kinetically distinct binding sites for ATP were observed for the ATP-stimulated Ca2+ uptake and the Ca2+-stimulated Mg2+-ATPase activity. The high-affinity Km values for ATP for these two processes were 16.3 microM and 28 microM, respectively. These results indicate that the processes studied operate in similar physiological concentration ranges for the substrates [Ca2+]f and ATP under identical assay conditions and, further, that these processes may be functionally coupled in the membrane.  相似文献   

20.
 从猪脑中提取钙调蛋白和突触质膜,我们研究了山莨菪碱对经有限蛋白水解和磷脂酶A_2处理后的突触膜Ca~(2+)-ATPase活性影响。发现药物对不同预处理后的Ca~(2+)-ATPase表现出不同影响并调节钙调蛋白对它的激活作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号