首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary (i) In human red cell membranes the sensitivity to N-ethylmaleimide of Ca2+-dependent ATPase and phosphatase activities is at least ten times larger than the sensitivity to N-ethylmaleimide of (Na++K+)-ATPase and K+-activated phosphatase activities. All activities are partially protected against N-ethylmaleimide by ATP but not by inorganic phosphate or byp-nitrophenylphosphate. (ii) Protection by ATP of (Na++K+)-ATPase is impeded by either Na+ or K+ whereas only K+ impedes protection by ATP of K+-activated phosphatase. On the other hand, Na+ or K+ slightly protects Ca2+-dependent activities against N-ethylmaleimide, this effect being independent of ATP. (iii) The sensitivity to N-ethylmaleimide of Ca2+-dependent ATPase and phosphatase activities is markedly enhanced by low concentrations of Ca2+. This effect is half-maximal at less than 1 m Ca2+ and does not require ATP, which suggests that sites with high affinity for Ca2+ exist in the Ca2+-ATPase in the absence of ATP. (iv) Under all conditions tested the response to N-ethylmaleimide of the ATPase and phosphatase activites stimulated by K+ or Na+ in the presence of Ca2+ parallels that of the Ca2+-dependent activities, suggesting that the Ca2+-ATPase system possesses sites at which monovalent cations bind to increase its activity.  相似文献   

2.
The only known cellular action of AlF4- is to stimulate the G-proteins. The aim of the present work is to demonstrate that AlF4- also inhibits 'P'-type cation-transport ATPases. NaF plus AlCl3 completely and reversibly inhibits the activity of the purified (Na+ + K+)-ATPase (Na+- and K+-activated ATPase) and of the purified plasmalemmal (Ca2+ + Mg2+)-ATPase (Ca2+-stimulated and Mg2+-dependent ATPase). It partially inhibits the activity of the sarcoplasmic-reticulum (Ca2+ + Mg2+)-ATPase, whereas it does not affect the mitochondrial H+-transporting ATPase. The inhibitory substances are neither F- nor Al3+ but rather fluoroaluminate complexes. Because AlF4- still inhibits the ATPase in the presence of guanosine 5'-[beta-thio]diphosphate, and because guanosine 5'-[beta gamma-imido]triphosphate does not inhibit the ATPase, it is unlikely that the inhibition could be due to the activation of an unknown G-protein. The time course of inhibition and the concentrations of NaF and AlCl3 required for this inhibition differ for the different ATPases. AlF4- inhibits the (Na+ + K+)-ATPase and the plasmalemmal (Ca2+ + Mg2+)-ATPase noncompetitively with respect to ATP and to their respective cationic substrates, Na+ and Ca2+. AlF4- probably binds to the phosphate-binding site of the ATPase, as the Ki for inhibition of the (Na+ + K+)-ATPase and of the plasmalemmal (Ca2+ + Mg2+)-ATPase is shifted in the presence of respectively 5 and 50 mM-Pi to higher concentrations of NaF. Moreover, AlF4- inhibits the K+-activated p-nitrophenylphosphatase of the (Na+ + K+)-ATPase competitively with respect to p-nitrophenyl phosphate. This AlF4- -induced inhibition of 'P'-type cation-transport ATPases warns us against explaining all the effects of AlF4- on intact cells by an activation of G-proteins.  相似文献   

3.
Treatment of human red cell membranes with pure phospholipase A2 results in a progressive inactivation of both Ca2+-dependent and (Ca2+ + K+)-dependent ATPase and phosphatase activities. When phospholipase C replaces phospholipase A2, Ca2+-dependent ATPase activity and Ca2+-dependent phosphorylation of red cell membranes are lost, while Ca2+-dependent phosphatase activity is enhanced and its apparent affinity for Ca2+ is increased about 20-fold. Activation of Ca2+-dependent phosphatase following phospholipase C treatment was not observed in sarcoplasmic reticulum preparation. Phospholipase C increases the sensitivity of the phosphatase to N-ethylmaleimide but has little effect on the kinetic parameters relating the phosphatase activity to substrate and cofactors, suggesting that no extensive structural disarrangement of the Ca2+-ATPase system has occurred after incubation with phospholipase C.  相似文献   

4.
Treatment of red cell membranes with pure phospholipase C inactivates (Na+ + K+)-ATPase activity and Na+-dependent phosphorylation but increases K+-dependent phosphatase activity. When phospholipase A2 replaces phospholipase C, all activities are lost. Activation of K+-dependent phosphatase by treatment with phospholipase C is caused by an increase in the maximum rate of hydrolysis of p-nitrophenylphosphate and in the maximum activating effect of K+, the apparent affinities for substrate and cofactors being little affected. After phospholipase C treatment K+-dependent phosphatase is no longer sensitive to ouabain but becomes more sensitive to N-ethylmaleimide. In treated membranes Na+ partially replaces K+ as an activator of the phosphatase. Although ATP still inhibits phosphatase activity, neither ATP, nor ATP+Na+ are able to modify the apparent affinity for K+ of K+-dependent phosphatase in these membranes.  相似文献   

5.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

6.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

7.
1. Preincubation with N-ethylmaleimide inhibits the overall activity of highly purified (Na+ +K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) preparations of rabbit kidney outer medulla. 2. This inhibition is decreased by addition of ATP or 4-nitrophenylphosphate under non-phosphorylating conditions, and also by addition of ADP or adenylylimidodiphosphate. 3. N-ethylmaleimide treatment leads to inhibition of K+-stimulated 4-nitrophenylphosphatase activity, Na+-stimulated ATPase activity, and phosphorylation by ATP as well as by inorganic phosphate. These inhibitions strictly parallel that of the overal (Na+ +K+)-ATPase reaction. 4. N-ethylmaleimide lowers the number of sites which are phosphorylated by inorganic phosphate, without affecting the dissociation constant of the enzyme-phosphate complex. 5. N-ethylmaleimide does not affect the relative stimulation by ATP of the K+-stimulated 4-nitrophenylphosphatase activity. 6. These effects of N-ethylmaleimide can be explained as a complete loss of active enzyme, either by reaction of N-ethylmaleimide inside the active center, or by alterations in the quaternary structure through reactions outside the active center.  相似文献   

8.
The activities of Mg2+-ATPase (Mg2+-activated ATPase), (Ca2+ + Mg2+)-activated ATPase and (Na+ + K+)-activated ATPase have been determined in microsomes (microsomal fractions) obtained from rat myometrium under different hormonal conditions. Animals were either ovariectomized and treated for a prolonged period of time with 17 beta-oestradiol or progesterone, or myometria were obtained at day 21 of pregnancy. In each case the endometrium was carefully removed. The Mg2+-ATPase consists of two components: an inactivating labile component and a second constant component. The rate of ATP hydrolysis by the labile component of the Mg2+-ATPase declines exponentially as a function of time after adding the membranes to the assay medium; this inactivation is caused by the presence of ATP in the medium. This ATPase activity inhibited by ATP is catalysed by a labile enzyme and hence it gradually diminishes within a few hours, even when the microsomes are kept on ice. This labile component has the highest activity in microsomes from pregnant rats, a lower activity in progesterone-treated rats, and the lowest in 17 beta-oestradiol-treated rats. This component of the Mg2+-ATPase is not affected by 90 nM-oxytocin. The constant component of the Mg2+-ATPase must be ascribed to a different enzyme, which, in contrast with the labile component, is very stable and not affected by the hormonal status of the animal. This constant component of the Mg2+-ATPase is inhibited both by Ca2+-calmodulin, and by oxytocin in microsomes from pregnant and from progesterone-treated animals, whereas such inhibition does not occur in microsomes from 17 beta-oestradiol-treated animals. The activity of the (Na+ + K+)-activated ATPase is not dependent on the hormonal status of the animal. Myometrial microsomes present an ATP-dependent Ca2+ transport, irrespective of the hormonal condition, but only in microsomes obtained from rats treated with 17 beta-oestradiol, can a (Ca2+ + Mg2+)-activated ATPase activity be demonstrated. This activity can be stimulated by calmodulin.  相似文献   

9.
1. Acetylation of human erythrocytes by N-acetylimidazole alters the structure of stroma prepared from these cells and the degree of alteration appears to be dependent upon the level of the initial treatment. These changes do not occur when stroma are acetylated. 2. Deacetylation by hydroxylamine or mild alkaline treatment causes a complete recovery of the (Na+ plus K+)-dependent and the Ca2+ -stimulated ATPase activities and indicates that the inhibition is due to the acetylation of a tyrosyl residue. There is only partial recovery of the Mg2+ -dependent ATPase after deacetylation. 3. ATP or Mg-ATP completely protect the (Na+ plus K+)-dependent ATPase, but not the Ca2+ -stimulated system. 4. The results indicate that the (Na+ plus K+)-dependent and the Ca2+ -stimulated ATPase activities have separate substrate binding sites and most likely are separate enzyme systems. 5. Acetylation of human erythrocytes has no effect on D-glucose transport.  相似文献   

10.
Spermine and spermidine inhibit the (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) reaction so that the effect increases as the ionic content due to Na+ and K+ in the reaction is reduced. Several other amines inhibit (Na+ + K+)-ATPase to varying degress and methylglyoxal-bis-(guanylhydrazone) was the most potent inhibitor among those tested. The inhibition by polyamines of the ATPase is uncompetitive with respect to Mg2+ and ATP activation of the reaction. Various naturally occurring polyamines and other amines inhibited Na+ activation of (Na+ + K+)-ATPase as well as Na+-dependent phosphoenzyme formation in an apparently competitive manner with respect to Na+. Likewise, K+-activation of (Na+ + K+)-ATPase as well as K+-p-nitrophenyl phosphatase was inhibited in an apparently competitive manner with respect to K+. Both the cation charge and structure (e.g., aliphatic chain length) may contribute to the inhibitory effects of the amines; however, Na+ sites appear to be more sensitive to cation charge than the aliphatic chain length of the amine, whereas the opposite appears to be true for K+ sites. The results do not indicate a specific effect of polyamines on (Na+ + K+)-ATPase or its partial reactions.  相似文献   

11.
1. Preincubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) preparations from rabbit kidney outer medulla with 5,5'-dithiobis-(2-nitrobenzoic acid) inhibits the (Na+ + 5+)-ATPase and K+-stimulated 4-nitro-phenylphosphatase activities. Phosphorylation of the enzyme by ATP and the Na+-stimulated ATPase activity are inhibited to the same extent as the (Na+ + K+)-ATPase activity, whereas the K+-stimulated 4-nitrophenylphosphatase activity is inhibited much less. 2. Titration with 5,5'-dithiobis-(2-nitrobenzoic acid) in sodium dodecyl sulphate shows the presence of 36 reactive sulfhydryl groups per molecule (Na+ + K+)-ATPase (Mr = 250 000). 3. Treatment with N-ethylmaleimide, resulting in complete inhibition of (Na+ + K+)-ATPase activity, leads to modification of 26 sulfhydryl groups, whereas treatment with 5,5'-dithiobis-(2-nitrobenzoic acid) results in modification of 12 sulfhydryl groups under the same conditions. 4. The reaction of N-ethylmaleimide with an essential SH-group is not prevented by previous blocking of sulfhydryl groups with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. These findings indicate the existence of at least two classes of sulfhydryl groups on the enzyme, each containing at least one vital group. The difference between these classes consists in their different reactivity towards 5,5'-dithiobis-(2-nitrobenzoic acid) and N-ethylmaleimide.  相似文献   

12.
(Na+ + K+)-activated ATPase in beef brain microsomes is inactivated by the disulfide of thionosine tri[gamma-32P]phosphate, an ATP analog. The inactivation of the enzyme, which is accompanied by an incorporation of radioactivity into the membrane protein, is abolished by ATP or dithiothreitol. Since dithiothreitol restores the activity of (Na+ + K+)-ATPase, which had previously been inactivated by this ATP analog, it is concluded that thionosine triphosphate disulfide reacts with a sulfhydryl group in the ATP binding site of (Na+ + K+)-activated ATPase.  相似文献   

13.
In the presence of ATP and of Mg(2+), human erythrocyte membranes show a phosphatase activity towards p-nitrophenyl phosphate which is activated by low concentrations of Ca(2+). The effect of Ca(2+) is strongly enhanced if either K(+) or Na(+) is also present. Activation of the p-nitrophenyl phosphate phosphatase by Ca(2+) reaches a half-maximum at about 8mum-Ca(2+) and is apparent only when the ion has access to the inner surface of the cell membrane. Ca(2+)-dependent phosphatase activity can only be observed if ATP is at the inner surface of the cell membrane, and the presence of ATP seems to be absolutely necessary, since either its removal or its replacement by other nucleoside triphosphates abolishes the activating effect of Ca(2+). The properties of the (ATP+Ca(2+))-dependent phosphatase are very similar to those of the Ca(2+)-dependent ATPase (adenosine triphosphatase), also present in erythrocyte membranes, which probably is involved in Ca(2+) transport in erythrocytes. The similarities suggest that both activities may be properties of the same molecular system. This view is further supported by the fact that p-nitrophenyl phosphate inhibits to a similar extent Ca(2+)-dependent ATPase activity and ATP-dependent Ca(2+) extrusion from erythrocytes.  相似文献   

14.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

15.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

16.
A density gradient-purified microsomal membrane preparation from rabbit fundic gastric mucosa was used for a detailed study of the K+-stimulated ATPase and associated intermediate reactions. Membranes incubated with gamma-[32P]ATP show the rapid incorporation of 32P into phosphoprotein. Phosphoprotein levels were markedly reduced (1) when ATP hydrolysis went to completion or (2) upon addition of unlabeled ATP, thus suggesting the participation of a rapid turnover phosphorylated intermediate in the gastric microsomal ATPase. Addition of K+, Rb+ or Tl+ greatly reduced the level of the intermediate while stimulating ATPase activity; the observed affinities of these cations were similar for the effects on both ATPase and intermediate levels, with Tl+ greater than K+ greater than Rb+. Neither ATPase nor intermediate were stimulated by Na+, and ouabain was without effect on the reactions, thus differentiating this system from the (Na+ + K+)-ATPase. Addition of various inhibitors showed differential effects on the partial reactions of the gastric ATPase system. N-ethylmaleimide and Zn2+ showed characteristics of completely abolishing the K+-stimulated component of ATPase as well as the effects of K+ in reducing the level of intermediate, thus suggesting that these agents exert their inhibitory effect on a phosphoprotein phosphatase partial reaction. F- abolished the K+-stimulated ATPase, but its more complex effects on the intermediate suggested an additional reaction step within the domain of the phosphorylated intermediate. Results are consistent with a model system for the gastric microsomal ATPase involving a Mg2+-dependent protein kinase, a phosphorylated intermediate(s), and a K+-stimulated phosphoprotein phosphatase.  相似文献   

17.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

18.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1.10(-4) M. The sarcolemmal markers, ouabain-sensitive (Na+ +K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ +Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27-39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ +Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ +Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K1/2 for inhibition approx. 1.5 microM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

19.
Membrane adenosine triphosphatase activities in rat pancreas   总被引:3,自引:0,他引:3  
The membrane ATPase activities present in rat pancreas were studied to investigate the possible role of ATPase enzymes in HCO3(-) secretion in the pancreas. It was found that all the HCO3(-)-sensitive (anion-sensitive) ATPase activity was accountable as pancreatic mitochondrial ATPase, thus supporting the view that a distinct plasma membrane 'bicarbonate-ATPase' is not involved in HCO3(-) secretion in pancreas. A remarkably high Mg+- and CA2+-requiring ATPase activity (30 mumol ATP hydrolysed/min per mg) was found in the plasma membrane fraction (rho = 1.10-1.13). This activity has been characterized in some detail. It is inhibited by p-fluorosulfonylbenzoyladenosine, an affinity label analogue of ATP and the analogue appears to label covalently a protein of Mr approximately 35 000. The (Ca2+ + Mg2+)-ATPase activity did not form a 'phosphorylated-intermediate' and was vanadate-insensitive. These and other tests have served to demonstrate that the (Ca2+ + Mg2+)-ATPase activity is different in properties from (Na+ + K+)-ATPase, Ca2+-ATPase, (H+ + K+)-ATPase or mitochondrial H+-ATPase. Apart from the (Ca2+ + Mg2+)-ATPase of plasma membrane and mitochondrial ATPase, the only other membrane ATPase activities noted were (Na+ + K+)-ATPase, which occurred in the same fractions as the (Ca2+ + Mg2+)-AtPase at rho = 1.10-1.13 and was of surprisingly low activity, and an ATPase activity in light membrane fractions (rho - 1.08-1.09) derived from zymogen granule membranes. At this time, therefore, there is no obvious candidate for an ATPase activity at the luminal surface of pancreatic cells which is directly involved in ion transport, but the results presented here direct attention to the high activity (Ca2+ + Mg2+)-ATPase in the plasma membrane fraction.  相似文献   

20.
Inside-out membrane vesicles from human red cells were used to investigate the side specificity of K+ interactions with the K+-activated phosphatase, a partial reaction of the (Na, K)-ATPase. In the absence of Na+ and ATP, K+ at moderate affinity sites at the extravesicular surface (cytoplasmic K+) stimulates activity, whereas intravesicular K+ (K+ normally at the extracellular surface) is without effect. In contrast, under conditions of phosphorylation of (Na, K)-ATPase (Na+ and ATP present), K+ ions acting at high affinity sites at both surfaces are required. It is concluded that an enzyme x K complex is involved in K+-activated phosphatase activity and that it is formed either by interaction of cytoplasmic K+ with the dephosphoenzyme, or as a consequence of extracellular K+ binding and dephosphorylation of the phosphoenzyme formed in the presence of Na+ plus ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号