首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gobioninae are a group of morphologically and ecologically diverse Eurasian freshwater cyprinid fishes. The intergeneric relationships of this group are unresolved and the possible monophyly of this subfamily remains to be established. We used complete mitochondrial cytochrome b gene sequences from most genera within the gobionine group, in addition to a selection of cyprinid outgroups, to investigate the possible monophyly of this group and resolve the interrelationships within the group. Our results support the monophyly of the Gobioninae and identify four monophyletic groups within the subfamily; the Hemibarbus group, the Sarcocheilichthys group, the Gobio group, and the Pseudogobio group. The morphologically aberrant genera Gobiobotia, Xenophysogobio and Gobiocypris are included in the Gobioninae, with the latter a sister group of Gnathopogon.  相似文献   

2.
The phylogenetic relationships within the fungus gnat subfamily Mycetophilinae (Diptera) are addressed using a combined morphological and molecular approach. Twenty-four species, representing nine genera of the tribe Mycetophilini and 15 genera of the tribe Exechiini, were included in the study. Analyses include nucleotide sequences of mitochondrial (cytochrome oxidase I and 16S), and nuclear (18S and 28S rDNA) genes, in addition to 65 morphological characters. A combined parsimony analysis, including all characters, supports the monophyly of the subfamily Mycetophilinae and two of its tribes, Exechiini and Mycetophilini. There is also statistical support for a Mycetophila- group and a Phronia- group within the tribe Mycetophilini. The Phronia- group includes the genera Phronia , Macrobrachius and Trichonta . The Mycetophila- group includes the genera Mycetophila , Epicypta , Platurocypta , Sceptonia and Zygomyia . A Bayesian analysis based on the nucleotide sequences alone also support these clades within Mycetophilini except for the position of Dynatosoma which is recovered as the sister taxon to the Phronia- group. A somewhat different pattern, however, is observed for the tribe Exechiini – neither molecular data nor the combined data set support unambiguously any intergeneric relationships within Exechiini.  相似文献   

3.
The gudgeons (subfamily Gobioninae) are a group of cyprinid fishes primarily distributed in East Asia. However, studies on their origins and divergence are scarce. Here the whole mitochondrial genome sequences of 27 gudgeon species (including one newly determined), 22 other cyprinid species, and two non‐cyprinids as outgroups are applied to infer the evolution of the gudgeons. Based on Bayesian and maximum likelihood phylogenetic analyses, the gudgeons were determined to be a monophyletic group which can be further subdivided into four monophyletic clades with strong supports. The divergence times of the gudgeons were estimated using a relaxed molecular clock method; the results indicate that these fishes originated in the early Paleocene (approx. 63.5 Mya) and that the basal Hemibarbus group diverged from the other gudgeon fishes (approx. 58.3 Mya). As an independent group the Coreius began to diverge from the remaining two groups (approx. 54.6 Mya); the most derived two groups diverged from each other (approx. 53.6 Mya). The divergences of the four gudgeon groups were within a relatively short time frame (approx. 58–53 Mya). Based on the reconstruction of evolutionary trends of gudgeon habitat, evidence is provided that supports the origin and differentiation of this fauna as being associated with some special paleo‐environmental events occurring from the early Paleocene to the Pliocene. The study represents comprehensive molecular dating and character evolution analyses of the gudgeons, and providing a valuable framework for future research in the evolution of the Gobioninae fishes.  相似文献   

4.
The Ceroxyloideae is a small but heterogeneous subfamily of palms (Arecaceae, Palmae). It includes a Caribbean lineage (tribe Cyclospathae), a southern hemisphere disjunction (tribe Ceroxyleae), and an amphi-Andean element (tribe Phytelepheae), until recently considered a distinct subfamily (Phytelephantoideae) due to its highly derived morphology. A variety of hypotheses have been proposed to account for the biogeography of the subfamily, involving Gondwanan vicariance, austral interplate dispersal from South America to Australia via Antarctica, Andean orogeny, and Pleistocene refuges. We assessed the systematic classification and biogeography of the group based on a densely sampled phylogeny using >5.5kb of DNA sequences from three plastid and two nuclear genomic regions. The subfamily and each of its three tribes were resolved as monophyletic with high support. Divergence time estimates based on penalized likelihood and Bayesian dating methods indicate that Gondwanan vicariance is highly unlikely as an explanation for basic disjunctions in tribe Ceroxyleae. Alternative explanations include a mid-Tertiary trans-Atlantic/trans-African dispersal track and the "lemurian stepping stones" hypothesis. Austral interplate dispersal of Oraniopsis to Australia could have occurred, but apparently only in the mid-Eocene/early Oligocene interval after global cooling had begun. Our data do not support Pleistocene climatic changes as drivers for speciation in the Andean-centered Phytelepheae as previously proposed. Radiation in this tribe coincides largely with the major uplift of the Andes, favoring Andean orogeny over Pleistocene climatic changes as a possible speciation-promoting factor in this tribe.  相似文献   

5.
A comprehensive tribal‐level classification for the world’s subfamilies of Hesperiidae, the skipper butterflies, is proposed for the first time. Phylogenetic relationships between tribes and subfamilies are inferred using DNA sequence data from three gene regions (cytochrome oxidase subunit I‐subunit II, elongation factor‐1α and wingless). Monophyly of the family is strongly supported, as are some of the traditionally recognized subfamilies, with the following relationships: (Coeliadinae + (“Pyrginae” + (Heteropterinae + (Trapezitinae + Hesperiinae)))). The subfamily Pyrginae of contemporary authors was recovered as a paraphyletic grade of taxa. The formerly recognized subfamily Pyrrhopyginae, although monophyletic, is downgraded to a tribe of the “Pyrginae”. The former subfamily Megathyminae is an infra‐tribal group of the Hesperiinae. The Australian endemic Euschemon rafflesia is a hesperiid, possibly related to “Pyrginae” (Eudamini). Most of the traditionally recognized groups and subgroups of genera currently employed to partition the subfamilies of the Hesperiidae are not monophyletic. We recognize eight pyrgine and six hesperiine tribes, including the new tribe Moncini. © The Willi Hennig Society 2008.  相似文献   

6.
The tribe Lythriini is a small group of diurnally active geometrid moths consisting of a single Palaearctic genus Lythria with five species. The systematic placement of Lythriini has remained controversial: though traditionally it has been placed into the subfamily Larentiinae, a number of morphological characters link this tribe with the subfamily Sterrhinae. A molecular phylogenetic study was conducted to verify the systematic position of Lythriini, using sequences of both mitochondrial and nuclear genes: elongation factor 1α ( EF-1α ), wingless ( wgl ), 28S rRNA expansion segment D2 ( 28S D2 ), cytochrome oxidase subunit 1 ( COI ) and NADH dehydrogenase subunit 1 ( ND1 ) (a total of 3784 bp). Phylogenetic analysis reliably demonstrated that Lythriini belong to the subfamily Sterrhinae. Therefore, we propose to remove tribe Lythriini from Larentiinae and unite it with Sterrhinae. Moreover, our analysis supports the monophyly of both Sterrhinae and Larentiinae. However, although both morphological data and interspecific genetic distances insinuated that Lythria cruentaria and L. sanguinaria are sister species, the latter formed a clade of sister taxa together with L. purpuraria .  相似文献   

7.
缘蝽科的比较形态学研究Ⅲ(异翅亚目:缘蝽总科)   总被引:2,自引:0,他引:2  
李新正 《动物学研究》1996,17(3):195-202
缘蝽科的比较形态学研究 Ⅲ(异翅亚目:缘蝽总科)李新正(中国科学院海洋研究所青岛266071)15棒缘蝽亚科(Pseudophloeinae)(图68—83)棒缘蝽类包括28个属,除VilgaStal为新世界分布,CeraleptusCosta和颗缘...  相似文献   

8.
The family Syrphidae (Diptera) is traditionally divided into three subfamilies. The aim of this study was to address the monophyly of the tribes within the subfamily Syrphinae (virtually all with predaceous habits), as well as the phylogenetic placement of particular genera using molecular characters. Sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I ( COI ) and the nuclear 28S ribosomal RNA gene of 98 Syrphinae taxa were analyzed using optimization alignment to explore phylogenetic relationships among included taxa. Volucella pellucens was used as outgroup, and representatives of the tribe Pipizini (Eristalinae), with similar larval feeding mode, were also included. Congruence of our results with current tribal classification of Syrphinae is discussed. Our results include the tribe Toxomerini resolved as monophyletic but placed in a clade with genera Ocyptamus and Eosalpingogaster . Some genera traditionally placed into Syrphini were resolved outside of this tribe, as the sister groups to other tribes or genera. The tribe Bacchini was resolved into several different clades. We recovered Paragini as a monophyletic group, and sister group of the genus Allobaccha . The present results highlight the need of a reclassification of Syrphinae.
© The Willi Hennig Society 2008.  相似文献   

9.
逗亚科棒花鱼属鱼类的分类与系统发育关系尚未解决。研究选择线粒体Cyt b基因和核基因RAG1、MLH3及MSH6作为分子标记, 重建了棒花鱼属鱼类的系统发育关系, 并结合形态证据对该属鱼类进行了分类厘定。结果表明: 棒花鱼与钝吻棒花鱼是单系种。拉林棒花鱼与辽宁棒花鱼是并系种, 一起形成单系群。拉林棒花鱼+辽宁棒花鱼一起嵌套在小鳔逗属鱼类内部, 钝吻棒花鱼嵌套在片唇逗属鱼类内部。拉林棒花鱼+辽宁棒花鱼+钝吻棒花鱼+片唇逗属+胡逗属+小鳔逗属+琵琶逗属鱼类组成单系群, 它们一起与棒花鱼形成姊妹群关系。可量性状与可数性状均不能区分拉林棒花鱼和辽宁棒花鱼。结合系统发育关系与形态证据, 棒花鱼属鱼类的分类厘定如下: 棒花鱼属鱼类包括棒花鱼和平江棒花鱼(未取样); 辽宁棒花鱼是拉林棒花鱼的同物异名, 后者的分类位置有待进一步校订; 钝吻棒花鱼校订为钝吻片唇逗。  相似文献   

10.
Complete mitochondrial cytochrome b sequences of 54 species, including 18 newly sequenced, were analyzed to infer the phylogenetic relationships within the family Cyprinidae in East Asia. Phylogenetic trees were generated using various tree-building methods, including Neighbor-joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) methods, with Myxocyprinus asiaticus (family Catostomidae) as the designated outgroup. The results from NJ and ML methods were mostly similar, supporting some existing subfamilies within Cyprinidae as monophyletic, such as Cultrinae, Xenocyprinae and Gobioninae (including Gobiobotinae). However, genera within the subfamily “Danioninae” did not form a monophyletic group. The subfamily Leuciscinae was divided into two unrelated groups: the “Leuciscinae” in East Asia forming as a monophyletic group together with Cultrinae and Xenocyprinae, while the Leuciscinae in Europe, Siberia, and North America as another monophyletic group. The monophyly of subfamily Cyprininae sensu Howes was supported by NJ and ML trees and is basal in the tree. The position of Acheilognathinae, a widely accepted monophyletic group represented by Rhodeus sericeus, was not resolved.  相似文献   

11.
Cyprinidae, the largest fish family, comprises ap-proximately 210 recognized genera and 2010 species that are distributed widely in Eurasia, East Indian Is-land, Africa, and North America[1]. Species richness of this family is the greatest in East Asia, for example, China has 122 genera and more than 600 species. It is difficult to build a comprehensive phylogeny of Cy-prinidae due to the large number of genera and species. The classification of this family has been subject to revisions an…  相似文献   

12.
Phylogenetic relationships based on 801 base pairs (bp) of the mitochondrial cytochrome b gene are examined for eight genera and 28 species of the akodontine tribe of South American murid rodents. The akodontine tribe comprises some 35% of the total diversity of the subfamily Sigmodontinae, but the current taxonomy at virtually all levels is uncertain because of inadequate generic diagnoses and assessments of variation and trends in traditional morphological characters. Monophyly of the tribe cannot be resolved by the sequence data, based on comparisons to outgroup taxa in three other tribes (Oryzomyini, Phyllotini, and Thomasomyini). However, highly corroborated monophyletic units within the group are obtained in a variety of both parsimony and distance analyses. These include a redefined and numerically dominant genus Akodon (with Microxus and Hypsimys as synonyms), Bolomys, Lenoxus, Oxymycterus, and a strongly supported assemblage that includes the central Andean Chroeomys and 'Akodon' andinus and the southern Abrothrix, 'Akodon' olivaceus, and the long-clawed mice of the genera Notiomys, Geoxus, and Chelemys. Sequence divergence within species is typically less than 5%, although levels can reach 10% for some highly polytypic forms. Divergence among genera within the tribe reaches 35% in corrected estimates, a level that is as great as that among representatives of different tribes. Changes in the current classification of akodontines are suggested based on these data, and the timing and place of origin of the tribe and its radiation is discussed.  相似文献   

13.
The subfamily Gobioninae is a subgroup in the specious fish family Cyprinidae, which bears high diversity in morphological and ecological dimensions and has its most components distributed in East Asia. In this study, the pharyngeal bones and teeth of 39 species belonging to 19 genera of the Gobioninae were examined, with the phylogenetic comparative method (PCM) and correlation methods employed to analyze the character evolution. Three characters on pharyngeal bones (shape of the pharyngeal bones, extension for attachment of the pharyngo-cleithralis internus posterior (PCIP) muscle, and teeth-bearing area) and six characters of pharyngeal teeth (shape of the five teeth in the main row, number of rows of the teeth) were identified and compared. When the character states were mapped on a molecular phylogenetic tree, it was found that, to adapt to different masticatory operations, different Gobioninae species have various morphological types of pharyngeal bones and teeth: some have intermediate pharyngeal bones bearing multiple rows of diverse teeth (conical, coarsely compressed, and compressed), others have broad pharyngeal bones bearing a single row of molar teeth, and still others have narrow pharyngeal bones bearing a single row of extremely compressed teeth. Tests on the phylogenetic signal and evolutionary associations revealed that evolution of the examined characters was all phylogenetically constrained and correlated. Owing to the homoplasy in evolution, it was suggested that the conventional method of using pharyngeal bones and teeth for phylogenetic reconstruction of cyprinid fishes should not be encouraged.  相似文献   

14.
Demin AG  Polukonova NV  Miuge NS 《Genetika》2011,47(10):1315-1327
This is the first study to infer the phylogenetic structure of minges of the subfamily Chironominae from the amino acid sequence of cytochrome oxidase I (COI). The subdivision of Chironominae into two tribes, Chironomini and Tanytarsini, has been confirmed. The segregation of the genera Pseudochironomus and Riethia into a separate tribe has not been confirmed. Stenochironomus gibbus forms a branch considerably deviating from the subfamily Chironominae. The genus Micropsectra is formed by a large polyphyletic cluster that also includes the genera Virgotanytharsus, Reotanytharsus, Kenopsectra, and Parapsectra. Tanytarsus is the basal genus of the tribe Tanytarsini. The times of divergence of the main taxa of Chironominae have been estimated. The calculated time of divergence of the genus Chironomus disproves the assumption that it is phylogenetically old.  相似文献   

15.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

16.
盔唇瓢虫族昆虫是瓢虫科中一类重要的捕食性天敌,主要捕食介壳虫,是该类害虫的重要生物防治天敌。盔唇瓢虫族昆虫研究历史悠久,目前世界盔唇瓢虫族包括22属超过280种,其中有9属42种分布在中国。该族许多属建立时间早,鉴别特征的原始描述不够详细,导致属间界定模糊,属的地位时常受到质疑且变动频繁。一些种类丰富,形态多变、且分布广泛的属如盔唇瓢虫属、光缘瓢虫属仍缺少世界性的订正研究。随着瓢虫科分子系统发育研究的开展,瓢虫科经典分类系统受到了较大的挑战,而盔唇瓢虫亚科已被证实为非单系起源的类群。目前,将盔唇瓢虫族归入瓢虫亚科得到绝大多数瓢虫科分子系统发育研究的支持,但与其它类群的亲缘关系仍存争议。尽管已有研究对盔唇瓢虫族现存所有属的系统发育关系进行了分析,但部分类群缺少分子数据,导致这些类群在该族系统发育关系中的位置并不明确。本文回顾了国内外盔唇瓢虫族的分类历史,记述了目前该族在瓢虫科的分类地位以及族下系统发育关系进展,最后对盔唇瓢虫族分类研究存在的问题及未来研究进行了展望。  相似文献   

17.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

18.
Yang, L., Mayden, R. L., Sado, T., He, S., Saitoh, K. & Miya, M. (2010). Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). —Zoologica Scripta, 39, 527–550. Carps (e.g. Koi) of the genus Cyprinus and Crucian carps (e.g. Goldfish) of the genus Carassius are among the most popular freshwater fishes around the world. However, their phylogenetic positions within the subfamily Cyprininae, relationships with their allies (e.g. Procypris, Carassioides), and the monophyly of the group formed by them and their allies, which is referred as the tribe Cyprinini sensu stricto, are far from clear. Historically, the Cyprinini was defined by different people according to whether a cyprinine fish possessed a spinous anal‐fin ray (or anal spine), the spine was serrated or not, and occasionally, the number of branched dorsal‐fin rays. Some definitions were established without providing any diagnostic characters. In this study, we investigated the monophyly of the tribe Cyprinini sensu stricto, based on four different historical definitions, and explored the phylogenetic relationships of these members in the subfamily Cyprininae. Using five mitochondrial genes as markers, both maximum‐likelihood and Bayesian trees were constructed using the optimal partitioning strategy. Both analyses successfully resolved a monophyletic Cyprininae and recovered seven major clades from this subfamily. The diagnosis limiting the tribe Cyprinini sensu stricto to four genera, Cyprinus, Carassius, Carassioides and Procypris, received most support. We propose that only those cyprinines that possess a serrated anal spine and have no <10 branched dorsal‐fin rays should be considered members of this tribe. Cyprinini is sister to the Sinocyclocheilus clade, a group traditionally considered a barbin, and together they form the ‘Cyprinini‐Sinocyclocheilus’ clade. Procypris forms the basal clade of the Cyprinini, whereas species of Carassius and Carassioides locate at the top.  相似文献   

19.
20.
This is the first study to infer the phylogenetic structure of minges of the subfamily Chironominae from the amino acid sequence of cytochrome oxidase I (COI). The subdivision of Chironominae into two tribes, Chironomini and Tanytarsini, has been confirmed. The segregation of the genera Pseudochironomus and Riethia into a separate tribe has not been confirmed. Stenochironomus gibbus forms a branch considerably deviating from the subfamily Chironominae. The genus Micropsectra is formed by a large polyphyletic cluster that also includes the genera Virgotanytharsus, Reotanytharsus, Kenopsectra, and Parapsectra. Tanytarsus is the basal genus of the tribe Tanytarsini. The times of divergence of the main taxa of Chironominae have been estimated. The calculated time of divergence of the genus Chironomus disproves the assumption that it is phylogenetically old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号