首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Heavy metals enrichment in groundwater poses great ecological risks to human beings. In the present research work, a total of 59 groundwater samples from 12 sampling points in Dingji coal mine, Huainan coalfield, were collected and measured for Cu, Pb, Zn, Cd, Ni, Mn, Cr, and Fe by inductively coupled plasma mass spectrometry (ICP-MS). The human health risk caused by heavy metals through the pathway of drinking water was evaluated and analyzed using the US Environment Protection Agency (USEPA) evaluation model. It has been found that the carcinogenic risk values were between 1.05 × 10?5 and 3.5 × 10?4, all exceeding the maximum acceptable level recommended by the USEPA, and the carcinogenic risk of Cr accounted for 99.67% of the total carcinogenic risk. The non-carcinogenic health risk values were all lower than the negligible level given by the USEPA, and the contribution of non-carcinogenic health risk was in the order of Cr > Zn > Cu / Pb >Mn > Fe > Cd > Ni. Among them, Cr had the largest contribution, accounting for 36% of the total non-carcinogenic risk value. In this study, the carcinogenic risk constituted 99.99% of the total health risk, indicating that the total health risk essentially consisted of carcinogenic risk. The research results suggest that much more attention should be paid to the health risk caused by Cr in the groundwater.  相似文献   

2.
The objective of this study is the evaluation of health risk of heavy metals in soils of urban community gardens of Baghdad City in Iraq. The soil samples were collected from 14 community gardens and analyzed for Cd, Cr, Cu, Ni, Pb and Zn. The non-carcinogenic hazard index (HI) and carcinogenic risk index (RI) were utilized to evaluate human health risk of heavy metals. The health hazard evaluation showed that there is no non-carcinogenic hazard in light of the fact that the HI values were beneath the threshold value (HI < 1). The HI for children and adults has a descending order of Cd < Cr < Cu < Ni < Pb < Zn. The carcinogenic RI values for Cd, Cr and Ni were over the unacceptable threshold value (RI < 1 × 10?4), demonstrating that there is a serious carcinogenic risk for children and adults in the study area. The carcinogenic RI for children and adults has a descending order of Cr < Cd < Ni. These findings give environment administrators and leaders data on whether therapeutic activities are required to decrease exposure.  相似文献   

3.
A total of 195 farmland soil samples were collected in Yanqi Basin, Xinjiang, northwest China, and the concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were analyzed for their concentrations and pollution levels using the Nemerow comprehensive index. The health risk assessment model introduced by USEPA was utilized to evaluate the human health risks of heavy metals. Results indicated that the average concentrations of these seven metals were lower than the allowed soil environmental quality standards of China, while the average concentrations of Cd, Cr, Ni, Pb and Zn exceeded the background values of irrigation soils in Xinjiang. The average contamination factor (CF) for Pb indicated the heavy pollution, whereas the CF for Cd, Zn, Ni, Cu and Cr indicated the moderate pollution. The average PLI of heavy metals indicated the low pollution. The non-carcinogenic hazard index were below the threshold values, and the total carcinogenic risks due to As and Cr were within the acceptable range for both children and adults. As and Pb were the main non-carcinogenic factors, while As was the main carcinogenic factor in the study area. Special attentions should be paid to these priority control metals in order to target the lowest threats to human health.  相似文献   

4.
The investigation revealed the adverse health threats on human beings from toxic metals via ingestion of seafood from two contaminated sites in Odisha. Bioaccumulation through food chain was presented as tissue metal concentrations. The non-carcinogenic and carcinogenic health hazards were estimated by Target Hazard Quotient (THQ) and Target Cancer Risk (TCR) following USEPA referred safe metal intake limit. THQ of Metals like Mn, Ni, Cd, Pb in both sites showed >1, indicating a severe non carcinogenic health threat to humans from the investigated metals. THQ of Cu, Zn, Fe, Cr and Hg showed < 1, implying the least possible deleterious health effects. Cr was the most significant carcinogenic pollutant in both sites. The marine fish consumption of Dhamra site might cause extra 7 cases of cancer per 10000 populations due to higher Cr level (cancer risk 6.7 × 10?3). Carcinogenic risk of Ni and Pb were below the tolerable range of 10E-4. The presence of Cd in sea foods elevated cancer risks in both sites. The metal pollution index (MPI) indicated, the highest toxic metal bio accumulation was contributed by Arius arius species. Ilisha megaloptera and Lates calcarifer from Dhamra and Puri showed highest hazard index (HI) suggesting unaccountable non-carcinogenic health threat.  相似文献   

5.
Diversion of water for irrigation from the Yellow River has impacted groundwater quality in the North China Plain (NCP). In this study, by using geochemical and isotope methods, groundwater origin, the spatial distribution of trace metals, pollution sources, and health risks were evaluated. Groundwater is recharged from surface water. The primary pollution components in surface water were B, Al, Se, Zn, Mn, and Ni—with concentrations exceeding standards by 100%, 84.4%, 64.4%, 31.1%, 20%, and 2.2%, respectively. In groundwater, exceeding standard rates for those elements were 100%, 100%, 61%, 25.7%, 39%, and 4.9%, respectively. The spatial distribution of polluted metals in surface water and groundwater was correlated, indicating an irrigation-influenced spatial distribution of trace metals in the groundwater. The trace metals were introduced via anthropogenic and geogenic activities. Zinc poses the most serious non-carcinogenic hazard for local residents. The ingestion pathway is much more likely to lead to zinc toxicity than the dermal absorption pathway. The carcinogenic Cd and Pb could result in an increased cancer risk for individuals exposed to the water. Non-carcinogenic hazard and carcinogenic risk attributable to groundwater is serious in the regions traversed by the rivers in the study area.  相似文献   

6.
Shengting Rao  Jia Fang  Keli Zhao 《Phyton》2022,91(12):2669-2685

Soil is an essential resource for agricultural production. In order to investigate the pollution situation of heavy metals in the soil-crop system in the e-waste dismantling area, the crop and soil samples (226 pairs, including leaf vegetables, solanaceous vegetables, root vegetables, and fruits) around the e-waste dismantling area in southeastern Zhejiang Province were collected. The concentrations of Cd, Cu, Pb, and Cr were determined. The average concentrations of Cd, Cu, Pb, and Cr in soils were 0.94, 107.79, 80.28, and 78.14 mg kg-1, respectively, and their corresponding concentrations in crops were 0.024, 0.7, 0.041, and 0.06 mg kg-1, respectively. The transfer capacity of leaf vegetables was significantly higher than that of non-leaf vegetables, and the accumulation of four heavy metals in crops tended to be Cd > Cu > Cr/Pb. The pollution index’s results revealed that the soil pollution degree under different land uses ranked as root vegetables soil > leaf vegetables soil > solanaceous vegetables soil > fruit soil. The carcinogenic and non-carcinogenic risks of heavy metal exposure were ranked as food intake > accidental ingestion > dermal contact > inhalation. The comprehensive non-carcinogenic risk was ranked as Cr > Cd > Pb/Cu. Our results could be used to provide useful information for further crop cultivation layout in the study area, which can guarantee the local residents’ health and food safety.

  相似文献   

7.
Abstract

Increasing levels of heavy metals in soil have become a serious concern for human health because they can be easily transferred into the human body through contaminated food web. It is imperative to evaluate pollution levels, origin and ecological risks of heavy metals. The geoaccumaualtion (Igeo), contamination factor (CF), pollution load index (PLI) and human health risk were estimated to determine the soil pollution in Faisalabad, a heavily-populated and industrialized city of Pakistan. The maximum CF (1.58) and PLI (1.22) values were estimated for Cd and Pb, respectively, and maximum Igeo (?0.19) value was observed for Cd. Correlation analysis and principal component analysis suggested that common industrial sources for Cd and Pb were identified in the study sites. It clearly indicates that the significant levels of heavy metals pollution arise from local industries, busy commercial centers and heavy traffic load in the last few decades in heavily-populated and industrialized city. Further, soil heavy metals concentration were used to evaluate the human health risk such as chronic or non-carcinogenic including hazard indexes HIexP (ingestion, inhalation and dermal and carcinogenic) and cancer risk (CR). The HIexP values of Pb (10.30) and Cd (4.56) were found above the permissible limit (HI = 1) for children. The CR due to carcinogenic metals (Co, Cr and Cd) are within the safe limit (1E-06 to 1E-04). However, CR was comparatively higher in adults as compared to children. The results from the current investigation can help to develop a sustainable strategy in the study region to minimize the entry of heavy metals in food chain through source identification and pollution abatement techniques.  相似文献   

8.
Food, drinking water, soil, and air are the main routes of exposure to trace metals, thus the assessment of the risks posed to humans by these elements is important. Wheat, potatoes, and maize are very important parts of the Iranian diet. The objectives of this study were to estimate the non-carcinogenic and carcinogenic health risks of Hg, Pb, Cd, Cr, Se, As, and Ni to adults and children via soil, water, and major food crops consumed in Hamedan Province, northwest Iran, using the total non-cancer hazard quotient (THQ) and cancer risk assessment estimates. Total non-cancer hazard of Ni and Hg, were greater than 1, and total cancer risk of As and Pb was greater than 1 × 10?6. Food consumption was identified as the major route of human exposure to metals, and consuming foodstuff threatens the health of the studied population. In Hamedan Province, consumption of wheat is the main source of intake of metals from foodstuff for adults, and in children, the soil ingestion route is also important.  相似文献   

9.
This study investigated the concentrations of selected metals (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) in freshwater source lakes in Pakistan and assessed the preliminary health risks associated with them. Water samples were collected from Khanpur and Simly Lakes and analyzed for the metals using flame atomic absorption spectrophotometry. Major contributions were noted for Ca, K, Mg, and K; however, the measured levels of Cd, Co, Cr, and Pb were many times higher than the permissible national/international guideline values. The risk characterization revealed that hazard quotient (HQing) and hazard index (HIing) values exceeded the acceptable limit unity, indicating non-carcinogenic risk to the recipients via oral intake of contaminated water. The carcinogenic risk (CRing) via ingestion route for Cd, Cr, and Pb was found much greater than the acceptable limit (10–6). Overall, Cd, Co, Cr, and Pb were the major contributors to potential adverse health risk to the inhabitants. Multivariate analysis demonstrated anthropogenic intrusions of the metals in both lakes. The study clearly indicated that there was gross contamination of water in both lakes, so special attention should be paid to manage the pollution sources of metals.  相似文献   

10.
The purpose of this study was to determine the contamination level, distribution, health risk and potential sources of Cr, Cd, Pb, Zn, Cu, Ni and As in 66 topsoil samples from industrial areas in Bandar Abbas County. The geoaccumulation index, pollution index and pollution load index were calculated to assess the pollution level in the industrial soils. The hazard index and carcinogenic risk were used to assess human health risk of heavy metals. Results showed that the contamination levels of heavy metals were in the descending order of Cu> Cd> Pb> Zn> As> Ni> Cr. Moreover, based on principal component analysis, Cd, Zn, Cu, and Pb originated mainly from anthropogenic sources, including power plants, oil and gas refinery, steel and zinc production factories and municipal waste landfills. For non-carcinogenic effects, hazard index of studied metals decreased in the order of Cr> As> Cd> Pb> Ni > Cu> Zn. Arsenic, chromium and cadmium were regarded as the priority pollutants. Carcinogenic risks due to Cd and As in suburban soils were within tolerable risk to human health; however, children faced more health risk in their daily life than adults via their unconscious ingestion and dermal contact pathway.  相似文献   

11.
Heavy metals in soil can affect human health through the exposure pathways of oral ingestion, dermal contact, and inhalation. In this study, to assess the health risk of heavy metals in the agricultural area of Xinglonggang, 52 soil samples were collected and tested to obtain the concentrations of As, Cd, Cr, Cu, Ni, Pb, V, and Zn in the soil. The enrichment factor indicated that the heavy metals of the agricultural soils were enriched, but the degree of enrichment was mild for all of the heavy metals. Coefficient analysis and principal component analysis indicated that V, Cr, Ni, and Pb were mainly from natural sources, As was from irrigation, Cu and Cd tended to be from chemical fertilizers and pesticides, and Zn was from mixed sources including irrigation, chemical fertilizers, and pesticides. A human-health risk assessment indicated that the residents in the study area face high risk from carcinogens and low risk from noncarcinogens; As and Cr are the major heavy metals affecting human health. This study provides a reference and a basis for formulating effective measures to prevent and control heavy metal enrichment in agricultural soils.  相似文献   

12.
Health Risk Assessment of Heavy Metals in Urban Soil of Karachi,Pakistan   总被引:1,自引:0,他引:1  
The potential health risk due to lifetime exposure to copper, lead, chromium, zinc, and iron in urban soil of Karachi, Pakistan, was evaluated. Mean concentrations of Cu, Pb, Cr, Zn, and Fe in topsoil samples were 33.3 ± 12.8, 42.1 ± 55.8, 9.6 ± 4.2, 99.5 ± 37.3, and 908.4 ± 57.8 mg kg?1, respectively. A U.S. Environmental Protection Agency model was adopted for the carcinogenic and non-carcinogenic risk assessment from different exposure pathways. Risk assessment indicated that the overall results for the carcinogenic risk were insignificant. However, the carcinogenic risk from Pb due to oral ingestion of soil exceeded the value of 1 × 10?6, in some areas of the city. It indicates that the exposure to Pb-contaminated soil may cause adverse health effects in humans, especially in children. The Hazard Quotient (HQ) for different metals through ingestion and dermal pathways was also found to be less than 1. The combined Hazard Index (HI) for children through different routes of exposure was 8.9 times greater than for adults. It indicates that the children are more susceptible to non-carcinogenic health effects of trace metals compared to adults. Particularly, non-carcinogenic risk of Pb to children via oral ingestion needs special attention.  相似文献   

13.
To manage public health and make better use of groundwater resources, the concentration characteristics and a health risk assessment of eight heavy metals in shallow groundwater were studied. Besides this, this paper introduced triangular fuzzy numbers into the USEPA health risk assessment model to assess the health risk posed to local children and adults through different exposure pathways. The results showed that Mn levels exceeded the WHO’s guideline values of 100?µg/L with the proportion of 27.98% and Sr were over the health reference level (HRL) of 1500?µg/L with the proportion of 56.25%, while other heavy metals were below the corresponding standard. The results of the HRA showed that the non-carcinogenic risks from Sr and Mn in the district were relatively higher, while those from the remaining six heavy metals were relatively lower. All hazard index (HI) values did not exceed the safety level of 1 for either age group. The average carcinogenic risk from Cr was slightly higher than the acceptable level of 1?×?10?6 for adults. Sensitivity analyses conducted using Monte Carlo simulation indicated that Sr and Cr concentrations were the most influential variables contributing to the non-carcinogenic and carcinogenic risk values, respectively, while body weight had a minor contribution.  相似文献   

14.
Risk characterization of agricultural soils in the mining areas of Singhbhum copper belt was done by determining the total concentrations of metals using inductively coupled plasma-mass spectrometry and assessing the potential ecological and human health risks. The concentrations were above the average shale values for most of the metals. Principal component analysis showed anthropogenic contributions of Cu, Ni, Co, Mn, Pb, and Cr in the soils. Ecological risk assessment revealed that 50% of the soil samples were at moderate to very high ecological risk. Health risks for adults and children were calculated using hazard quotients (HQs), hazard index (HI), and Cancer risks for the oral, dermal, and inhalation pathways. The HQs for all the metals except As and Co were below 1, which suggested that non-carcinogenic risks due to metal exposure through soils were within the safe limit. However, considering all the metals and pathways, the HI for adults and children was 0.71 and 5.61, respectively, suggesting appreciable risk to local residents. The carcinogenic risks due to As and Cr in the soils were within the acceptable value of 1E–04. For both carcinogenic and non-carcinogenic risks, oral ingestion appeared to be the primary pathway followed by dermal and inhalation pathways.  相似文献   

15.
This study aimed to determine bioavailability of heavy metal concentrations (Al, Fe, Zn, Cu, Co, Cd, Pb and Cr) in 76 urban surface soil samples of Klang district (Malaysia). This study also aimed to determine health risks posed by bioavailability of heavy metals in urban soil on adults and children. For bioavailability of heavy metal concentrations, a physiologically bioavailability extraction test in vitro digestion model was used. Mean values of bioavailability heavy metal concentrations for this study were found to be the highest in Al (25.44 mg/kg) and lowest in Cr (0.10 mg/kg). Results of Spearman correlation coefficient (r) values showed significant correlations were observed for Al-Fe (r = 0.681), Cd-Co (r = 0.495), Cu-Zn (r = 0.232), Fe-Pb (r = 0.260), Fe-Zn (r = 0.239). For cluster analysis, output showed that these heavy metals could be classified into four clusters: Cluster 1 consisted of Cd, Cr, Co, and Pb; Cluster 2 consisted of Zn and Cu; Cluster 3 consisted of Fe; and Cluster 4 consisted of Al. For Clusters 1 and 2, anthropogenic sources were believed to be the sources, while for Clusters 3 and 4 the heavy metals originated from natural sources. Health risks were determined in adults and children through health risk assessment. For adults, Hazard Quotient (HQ) value was <1, indicating no non-carcinogenic risk, while for children, the HQ value was >1, indicating a non-carcinogenic risk. Meanwhile, for carcinogenic risk, heavy metal contamination in the Klang district might not pose a carcinogenic risk to adults while it may pose a carcinogenic risk to children because TR values in this study were >1.0E-04 for children. Output has identified the general health risk in the Klang district. Moreover, this study's findings will contribute to fill in the gap of knowledge on heavy metals' impacts on human health and urban development in the Klang District.  相似文献   

16.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

17.
The pollution and potential health risk due to lifetime exposure to heavy metals in urban soil of China were evaluated, based on the urban soil samples collected from published papers from 2005 to 2014. The contamination levels were in the order of Cd > Hg > Cu > Zn > Pb >As > Ni > Cr, and Hg and Cd fell into the category of “moderately contaminated” to “heavily contaminated.” The non-carcinogenic risk for different populations varied greatly, among which children faced high risk, and then the adult female and adult male followed. The hazard index (non-carcinogenic risk) higher than 1.00 occurred in Shanghai, Gansu, Qinghai, Hunan, and Anhui, whereas most of those in northern and western China had low risks. For the carcinogenic risk, Anhui and Ningxia provinces had urban soils exceeding the safe reference (1 × 10?6–1 × 10?4). Qinghai and Gansu had high carcinogenic risks since their risk indexes were much closer to the reference, and the others were in low risk.  相似文献   

18.
Due to accelerated urbanization and reform of industrial structure in China, polluting industries in major cities have been closed or relocated. Consequently, large numbers of industrial sites were generated and the contaminated soils on and around these sites may pose risks to humans. This case study presents an estimation of human health risks for an area that is mainly impacted through air dispersion and deposition from a large-scale metallurgical refinery complex in Zhuzhou city, Hunan Province, China. Carcinogenic and non-carcinogenic risks posed by the contaminants were estimated under future industrial and residential land use scenarios. The result shows that adverse health effects may occur primarily through ingestion of soils contaminated with As, Cd, and Pb. The total carcinogenic risks of multiple contaminants for a large area exceed the acceptable risk level of 1 × 10?5, and several localized hotspots, where the total hazard index exceeds 1 were identified. Soils in the Tongda site pose the highest carcinogenic risks and non-carcinogenic hazards. It is concluded that potential human health risks exist under the proposed redevelopment scenarios, and development of risk-based remediation strategies is recommended.  相似文献   

19.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

20.
Enrichment of trace elements in groundwater poses considerable risks to human health. The concentrations of seven trace elements (Cr, Mn, Ni, Cu, Zn, Cd, and Pb) in 34 samples of shallow groundwater from the study area were estimated. We assessed the concentrations of the trace elements and health risks with statistical analysis and the US Environment Protection Agency (USEPA) model. The results showed that the mean concentrations of trace elements decreased as follows: Mn > Zn > Ni > Cr > Cu > Cd > Pb. Apart from Mn at one sampling point, the concentrations of all trace elements were below the guideline values of the World Health Organization for drinking water. Correlation and cluster analysis indicated that the trace elements fell into groups, with Ni and Cu in one group, and Mn, Zn, and Cd in another, which suggested that the trace elements grouped together had similar sources. The total non-carcinogenic risk values ranged from 8.52 × 10?4 to 1.27 × 10?1. The total carcinogenic risk caused by Cr and Cd averaged 1.62 × 10?6, which exceeded the acceptable level of 1 × 10?6 recommended by the USEPA. The carcinogenic risk of Cr accounted for 75.93% of Rtotal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号