首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
旨在克隆点青霉菌(Penicillium notatum)中的葡萄糖氧化酶基因(GOD),在毕赤酵母(Phchia pastoris)中异源表达,纯化并研究其酶学性质。利用PCR技术从点青霉No.8312菌株的基因组DNA中克隆得到GOD基因,将该基因克隆到穿梭载体p MD-AOX上并在毕赤酵母X33中表达,对纯化后的葡萄糖氧化酶的酶学性质进行分析。结果显示,X33-GOD可高表达具有活性的GOD,在30℃、pH6.5的条件下,其培养液上清GOD酶活可达496 U/mL,比活123.0 U/mg;重组表达的葡萄糖氧化酶最适温度为40-45℃,最适pH为6.0,酶的稳定性研究表明,该酶在pH3.5-7.0区间和温度低于50℃下稳定。1 mmol/L Zn^(2+)对其有激活作用;Ag^+对该酶活性有较大抑制作用。构建出GOD的高产毕赤酵母工程菌株,与点青霉GOD相比,具有更高的发酵酶活和比活。  相似文献   

2.
旨在克隆点青霉菌(Penicillium notatum)中的葡萄糖氧化酶基因(GOD),在毕赤酵母(Phchia pastoris)中异源表达,纯化并研究其酶学性质。利用PCR技术从点青霉No.8312菌株的基因组DNA中克隆得到GOD基因,将该基因克隆到穿梭载体p MD-AOX上并在毕赤酵母X33中表达,对纯化后的葡萄糖氧化酶的酶学性质进行分析。结果显示,X33-GOD可高表达具有活性的GOD,在30℃、pH6.5的条件下,其培养液上清GOD酶活可达496 U/mL,比活123.0 U/mg;重组表达的葡萄糖氧化酶最适温度为40-45℃,最适pH为6.0,酶的稳定性研究表明,该酶在pH3.5-7.0区间和温度低于50℃下稳定。1 mmol/L Zn~(2+)对其有激活作用;Ag~+对该酶活性有较大抑制作用。构建出GOD的高产毕赤酵母工程菌株,与点青霉GOD相比,具有更高的发酵酶活和比活。  相似文献   

3.
该研究采用PCR技术,从发状念珠藻细胞中克隆了谷胱甘肽还原酶(glutathione reductase,GR)基因,命名为NfGR,其开放阅读框长1 374bp,编码458个氨基酸,蛋白相对分子量为49.42kD,理论等电点为5.49。氨基酸序列分析表明,NfGR蛋白具有NADPH结合位点超家族(NADB-Rossmann superfamily)和吡啶氧化还原酶二聚体超家族(Pyr_redox_dim superfamily)2个结构域,与点形念珠藻(Nostoc punctiforme)的相似性达93%。系统进化树分析表明,NfGR与点形念珠藻处在同一进化枝上,亲缘关系较近。qRT-PCR表达分析表明,在不同浓度PEG-6000处理下,NfGR基因均保持上调表达,其中,PEG-6000浓度为8%时,NfGR基因的相对表达量达到峰值(32.69)。研究推测,谷胱甘肽还原酶可能参与了发状念珠藻对干旱胁迫过程的响应。  相似文献   

4.
利用反转录聚合酶链式反应(RT-PCR)和快速扩增cDNA末端(RACE)技术克隆了褐飞虱NADH泛醌氧化还原酶51kD亚基(NQO)基因的全长cDNA片段,并进行了核苷酸序列测定.结果表明,该cDNA片段长度为1930 bp,所编码的蛋白与家牛、小家鼠、食蟹猴、人和蟾蜍的NADH泛醌氧化还原酶51kD亚基的氨基酸序列的同源性分别达到77%、76%、76%、75%和75%.Southern杂交分析表明,NQO基因在褐飞虱基因纽中以单拷贝形式存在.  相似文献   

5.
FAD结合的氧化还原酶编码基因FADB(GenBank ID:Afu4g14630)的编码产物在烟曲霉中为一种与E4D结合的氧化还原酶,可能参与真菌的呼吸.为了探究其具体功能,本研究通过克隆烟曲霉E4DB基因,构建烟曲霉FADB基因的敲除株,了解该基因对烟曲霉药物敏感性、渗透压、氧化压力物质敏感性的作用机理.采用高通量...  相似文献   

6.
从巴西橡胶树差减cDNA文库中筛选到一个与脂酰辅酶A还原酶同源性较高的基因片段,根据该基因片段序列信息,设计特异引物,采用RACE进行差异片段的5’和3’端的扩增,获得长度为1365bp的cDNA克隆R28(GenBank登陆号:AY461413)。序列分析表明,该基因包含1149bp的开放阅读框,5'-UTR为96bp,3'-UTR为128bp,编码382个氨基酸,推测其蛋白质的分子量为43.5kDa,等电点为8.97,有一个跨膜螺旋N(187至215位氨基酸)和1个由17个氨基酸组成的信号肽(1至17位氨基酸)。R28含有脂酰辅酶A还原酶的保守(NADP结合蛋白保守区),推测该基因是一个脂酰辅酶A还原酶基因。  相似文献   

7.
【目的】从海洋样品中分离筛选出产葡萄糖氧化酶菌株。【方法】采用双层平板筛选法进行初筛、复筛确定一株酶活较好的菌株,命名为GOD2(Glucose oxidase)。通过形态学、生理生化特征及16S rRNA基因序列分析研究其分类地位,并对其产生的葡萄糖氧化酶进行分离纯化和部分酶学性质的研究。【结果】细菌GOD2为产葡萄糖氧化酶菌株且遗传稳定,初步鉴定该菌株为假单胞杆菌(Pseudomonas migulae),其所产酶最适反应温度为20°C,热稳定性较差,40°C剩余相对酶活80%;超过40°C酶活力迅速下降。【结论】GOD2是一株极具研究价值的产低温葡萄糖氧化酶菌株。目前没有关于利用该菌生产葡萄糖氧化酶的报道。  相似文献   

8.
野生罂粟COR基因克隆及转化   总被引:1,自引:0,他引:1  
以野生罂粟幼叶总RNA为模板,采用RT-PCR技术克隆到可待因酮还原酶基因COR的cDNA序列,所获得的cDNA序列全长966 bp,具有完整的ORF,编码321个氨基酸.Blast分析表明,该片段与GenBank中的可待因酮还原酶基因(COR)家族相似性很高,其中与基因COR1.1的一致性最高可达98.96%,该片段命名为COR(GenBank,登录号为FJ624147).以中间载体pHANNIBAL和植物表达载体pART27为基础,构建了CaMV-35S启动子驱动的含可待因酮还原酶基因片段反向重复序列的RNAi双元表达载体pARC,转化烟草获得转基因植株.  相似文献   

9.
从盐胁迫处理的多枝赖草(Leymus multicaulis)新鲜叶片中提取分离出RNA,然后根据报道的多种植物谷胱甘肽还原酶氨基酸序列上两个保守区设计简并引物。RT-PCR获得了1条大小约400bp的条带,回收该条带并进行TA克隆,蓝白斑筛选,得到阳性克隆。经过质粒大小比较和PCR验址.进行序列测定和分析,发现该序列属于GR基因片段,其Genbank注册号为AY781786.编码的氨基酸序列与Oryza sativa、Zea mays、Arabidopsis thaliana和Nicotiana tabacum的GR相应区段的氨基酸序列一致性分别为91%、89%、86%和83%。蛋白质序列分析发现该序列含有一个吡啶二硫酸核苷酸氧化还原酶(pyridine nucleotide-disulphide oxideoreductase)保守结构域。进化树分析表明,该多枝赖草cDNA片段编码的氨基酸序列在进化上与水稻和玉米较近。  相似文献   

10.
麦迪霉素产生菌酮基还原酶基因的研究   总被引:3,自引:0,他引:3  
将麦迪霉素产生菌基因文库中与放线紫红索酮基还原酶基因actⅢ有同源性的4·0kb DNA片段克隆到质粒载体pWHM3中,构成重组质粒pCB4。将质粒pCB4转入酮基还原酶基因缺陷菌株——加利利链霉菌ATCC3167l中,得到转化子。转化子发酵产物经TLC和HPLC分析证明是阿克拉菌酮,与加利利链霉菌原株ATCC31133的产物相同,说明麦迪霉素产生菌酮基还原酶基因互补了加利利链霉菌ATCC31671中缺陷的酮基还原酶基因,使其恢复了产生阿克拉菌酮的能力。4.Okb DNA片段插入方向相反的重组质粒pCBR4在加利利链霉菌ATCC31671中发酵产物经TLC分析证明也是阿克拉菌酮,这说明4.0kbDNA片段中麦迪霉素产生菌酮基还原酶基因具有自身的启动子。对4.0kb DNA片段进行了限制酶酶切分析,建立了其酶切图谱。以actⅢ基因为探针,经分子杂交以及亚克隆和DNA转化实验,将麦迪霉索产生菌酮基还原酶基因定位于BssH Ⅱ—BamH Ⅰ 1.3kb DNA片段上。对1.3kb DNA片段核苷酸序列分析结果表明:此1.3kbDNA片段中含有一个独立的ORF,起始密码ATG,终止密码TAG,含783bp;在起始密码上游有GGAGG5个核苷酸SD序列;此ORF编码260个氨基酸,与actⅢ基因编码的261个氨基酸相似性为77.4%,相同性为66.7%,对麦迪霉素产生苗酮基还原酶基因的可能作用进行了讨论。  相似文献   

11.
黑曲霉葡萄糖氧化酶基因的克隆及其在酵母中的高效表达   总被引:8,自引:0,他引:8  
将黑曲霉葡萄糖氧化酶(GOD)基因重组进大肠杆菌酵母穿梭质粒Ppic9,转化甲基营养酵母Pichia pastoris GS115,构建出GOD的高产酵母工程菌株。在酵母αFactor及AOX1基因启动子和终止信号的调控下,黑曲霉GOD在甲基酵母中大量表达并分泌至胞外,经甲醇诱导3~4d,发酵液中的GOD活力可达30~40u/mL。SDS-PAGE证实GOD在培养物上清中的含量显著高于其它杂蛋白,约占胞外蛋白总量的60%~70%,经Q SepharoseTMFast Flow离子交换柱一步纯化即达电泳纯。重组酵母GOD比活达426.63u/mg蛋白,是商品黑曲霉GOD的1.6倍。动力学性质分析表明,重组酵母GOD的KmKcat分别为38.25mmol/L和3492.66s-1,与商品黑曲霉GOD相比,具有更高的催化效率。重组酵母GOD的高活力特性可有效提高葡萄糖传感器的线性检测范围。  相似文献   

12.
A bifunctional fusion enzyme system constructed by gene splicing is proposed as a new model to develop sequence biosensors, taking maltose biosensor as an example. The cDNA fragment of Aspergillus niger glucoamylase (E.C 3.2.1.3, GA) was fused to the 3' end of Aspergillus niger glucose oxidase (E.C 1.1.3.4, GOD) gene with the insertion of a flexible linker peptide [-(Ser-Gly)5-] coding sequence. The fusion gene was cloned into the vector pPIC9 and expressed in Pichia pastoris GS115 under the control of the AOX1 promoter. It was found that a bifunctional hybrid protein with a molecular weight of 430 kDa was secreted after induction with methanol. The fusion enzyme GOD-(Ser-Gly)5-GA (GLG) was purified using Q Sepharose Fast Flow ion-exchange chromatography. Kinetic analysis demonstrated that GLG retained the typical kinetic properties of both GA and GOD. After being immobilized on an aminosilanized glass slide through covalent bonding by glutaraldehyde, GLG showed much higher sequential catalytic efficiency than the mixture of separately expressed GA and GOD (GA/GOD). Maltose biosensors were fabricated with GLG and GA/GOD, respectively. The performance characteristics of the maltose biosensor with respect to reproducibility, signal level, and linearity were effectively improved by using the fusion enzyme. Our findings offer a basis for the development of other sequence biosensors.  相似文献   

13.
A polygalacturonase gene of Aspergillus awamori IFO 4033 was cloned by genomic Southern hybridization with a probe of a DNA fragment synthesized by PCR. This was done using primers constructed based on the N-terminal amino acid sequence of a polygalacturonase, protopectinase-AS, produced by the strain and the consensus internal amino acid sequence of fungal polygalacturonases. The cloned polygalacturonase gene, containing an ORF, encodes 362 amino acids, including a 52-bp intron. It contains the consensus nucleotide sequence of PacC binding sites, and its expression was appeared to be regulated by ambient pH. After the intron was excised, the cloned gene was inserted into an expression plasmid for yeast, pMA91, and introduced into Saccharomyces cerevisiae to be expressed. The expressed gene product was purified to a homogeneous preparation, and this confirmed that the polygalacturonase produced was the product of the cloned gene.  相似文献   

14.
A bacterium, Burkholderia sp. JBA3, which can mineralize the pesticide parathion, was isolated from an agricultural soil. The strain JBA3 hydrolyzed parathion to p-nitrophenol, which was further utilized as the carbon and energy sources. The parathion hydrolase was encoded by a gene on a plasmid that strain JBA3 harbored, and it was cloned into pUC19 as a 3.7-kbp Sau3AI fragment. The ORF2 (ophB) in the cloned fragment encoded the parathion hydrolase composed of 526 amino acids, which was expressed in E. coli DH10B. The ophB gene showed no significant sequence similarity to most of other reported parathion hydrolase genes.  相似文献   

15.
We proposed a yeast transformant cell incorporating the Aspergillus niger glucose oxidase gene (GOX gene), which is capable of constitutively as well as secretory expression. The GOX gene has been cloned in this study. This conclusion is based on the following: first, the ligated DNA determined by electrophoresis, was a 1489-1882bp fragment, close to the size of glucose oxidase (GOD), which is 1818bp. Secondly, the single open reading frame encoded a protein of 605 amino acids. Thirdly, secreted GOD recombinant proteins in the culture supernatants of the GOX gene transformant migrated as a single band in SDS-PAGE with an apparent molecular mass of between 75,000 and 100,000 Da, which is glycosylated GOD by the Pichia pastoris X-33 host machinery during the secretion process. Finally, the clones were cultured and secreted a protein, which possessed the GOD activity of catalyzing beta-d-glucose oxidation. With regard to the pH characteristics, the activity was more than 80% of the maximum activity in the range between pH 5 and pH 7. As for the temperature characteristics, the activity was not less than 92% of the maximum in the temperature range between 10 and 45 degrees C. The GOX gene transformant was able to maintain the GOD enzyme activity and produce recombinant GOD continuously for at least 2 weeks.  相似文献   

16.
The degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine (2-chloro-4-ethyl-amino-6-isopropylamino-1,3,5-triazine) is associated with an indigenous plasmid in Rhodococcus sp. strain TE1. Plasmid DNA libraries of Rhodococcus sp. strain TE1 were constructed in a Rhodococcus-Escherichia coli shuttle vector, pBS305, and transferred into Rhodococcus sp. strain TE3, a derivative of Rhodococcus sp. strain TE1 lacking herbicide degradation activity, to select transformants capable of growing on EPTC as the sole source of carbon (EPTC+). Analysis of plasmids from the EPTC+ transformants indicated that the eptA gene, which codes for the enzyme required for EPTC degradation, residues on a 6.2-kb KpnI fragment. The cloned fragment also harbored the gene required for atrazine N dealkylation (atrA). The plasmid carrying the cloned fragment could be electroporated into a number of other Rhodococcus strains in which both eptA and atrA were fully expressed. No expression of the cloned genes was evident in E. coli strains. Subcloning of the 6.2-kb fragment to distinguish between EPTC- and atrazine-degrading genes was not successful.  相似文献   

17.
A polygalacturonase gene of Aspergillus awamori IFO 4033 was cloned by genomic Southern hybridization with a probe of a DNA fragment synthesized by PCR. This was done using primers constructed based on the N-terminal amino acid sequence of a polygalacturonase, protopectinase-AS, produced by the strain and the consensus internal amino acid sequence of fungal polygalacturonases. The cloned polygalacturonase gene, containing an ORF, encodes 362 amino acids, including a 52-bp intron. It contains the consensus nucleotide sequence of PacC binding sites, and its expression was appeared to be regulated by ambient pH. After the intron was excised, the cloned gene was inserted into an expression plasmid for yeast, pMA91, and introduced into Saccharomyces cerevisiae to be expressed. The expressed gene product was purified to a homogeneous preparation, and this confirmed that the polygalacturonase produced was the product of the cloned gene.  相似文献   

18.
Abstract Using the promoter probe pKK232-8 a 0.6-kb fragment containing an active promoter sequence from Xanthomonas campestris pv campestris was cloned. Two new plasmids were constructed: (a) pAP2, which contains the amy gene from Bacillus subtilis cloned between the Eco RI and Hin dIII sites in the pMFY40 plasmid, and (b) pAP2X, obtained after introduction of the cloned X. campestris promoter upstream from the amy gene. These plasmids were introduced into amylolytic and non-amylolytic strains of X. campestris pv campestris and pv manihotis , respectively. Quantification of alpha-amylase specific activity in liquid culture showed that the introduction of a Xanthomonas promoter doubled the expression of amy gene when the host strain was the pathovar campestris but had little effect on the strain from pathovar manihotis . This difference in the promoter activity might indicate that the cloned promoter is specific and could be involved in pathovar differentiation or plant-pathogen interaction.  相似文献   

19.
An integrative plasmid containing a 1.3 kb fragment of chromosomal DNA from Enterobacter amnigenus was constructed. The Omega fragment encoding spectinomycin/streptomycin resistance was cloned into the unique BglII site of the resulting plasmid, and the interrupted fragment was transferred via plasmid pMAK705 by electroporation into E. amnigenus with a selection for spectinomycin resistance. Cointegrants were resolved to generate an E. amnigenus strain that expressed spectinomycin resistance, but grew as rapidly as the parental strain. The cloned fragment encodes a putative homologue of the proW gene of Escherichia coli that is not essential for E. amnigenus growth. The integrative plasmid is now available to introduce any heterologous DNA into the E. amnigenus chromosome, for the construction of promoter-probe vectors for the studies of gene regulation, or to construct plasmids suitable for the isolation of secretion signals. Immediate applications of this system will include the expression and secretion of crystal toxins from bacilli for the biological control of mosquito larvae infected with the bacterial host.  相似文献   

20.
S. griseus Kr. is a commercial strain producing grisin, an antibiotic of the streptothricin group used as a feed additive. It was shown earlier that genetic instability of the strain was very high which was evident from a high frequency of nonreverting Grn- Grns mutants. With densitographic analysis of chromosomal DNA electrophoregrams and DNA-DNA hybridization it was revealed that the molecular basis of the genetic instability of the S. griseus strain was deletion of a DNA fragment about 20 kb in size containing a grisin resistance gene. The resistance gene designated as gsr was cloned to S. lividans TK 64 within the plasmid vector pIJ699. The restriction map of a cloned DNA fragment with a gsr gene was constructed and its similarity to that of a nat gene resistant to norseothricin, another streptothricin was observed. Introduction of a gsr gene within the multicopy plasmid pIJ699 into S. griseus 212, a highly productive strain synthesiing the antibiotic, led to an increase in its resistance and productivity. Proceeding from the preliminary data on possible linkage of a gsr gene and grisin biosynthesis genes, it appeared possible to use the cloned gene as a molecular probe in cloning the biosynthesis genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号