首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
临床症状是诊断疾病的基础资料,可以作为疾病诊断的出发点和重要根据。在兽医临床中,由于非人灵长类动物不能用语言表达自身感觉,需要根据客观的临床症状观察来发现。所以兽医给动物诊断疾病,必须熟练掌握其各种常见临床症状与疾病的关系,以便根据症状的提示对疾病做出初步诊断。本文根据多年从事非人灵长类动物兽医临床工作的实践经验,从循环、呼吸、消化、泌尿、生殖、神经、造血、肌肉、骨骼、皮肤、代谢及中毒等方面,总结了非人灵长类实验动物常见的临床症状和相应疾病初步诊断的联系。  相似文献   

2.
李鹏承  万海峰  李伟 《生命科学》2020,32(7):661-663
由于非人灵长类动物与人类在进化上的亲缘关系和生理特征上的高度相似,它们在人类传染病、生殖、发育、代谢、神经和衰老等研究领域具有重要的应用价值。现对非人灵长类动物的常见胚胎工程技术进行综述,包括非人灵长类动物的配子收集、体外受精和胚胎移植等;同时,还结合基因组编辑技术的发展,简要介绍了近年来胚胎工程技术在非人灵长类动物基因编辑方面的应用。  相似文献   

3.
睡眠行为在非人灵长类动物的生活史中占有十分重要地位。关于非人灵长类睡眠地点选择与利用的研究是灵长类行为生态学领域的核心课题之一。本文回顾以往的研究, 总结了非人灵长类动物睡眠地点选择的三个主要影响因素, 即捕食压力引起的安全因素, 睡眠地点的舒适因素和卫生因素; 分别对非人灵长类睡眠地点选择的三种主要形式进行了初步的成因讨论, 对未来的研究方向进行探索性地展望。  相似文献   

4.
恒河猴在生殖生物学中的应用进展   总被引:1,自引:0,他引:1  
目的非人灵长类动物在生殖生物学研究领域是一种非常重要的实验动物。人类利用非人灵长类动物与人的生物学等方面相似的特征,开展了生殖生物学、生理学、药理学、毒理学以及生育调节等方面的研究工作,为生殖生物学基础研究以及人类健康和疾病问题的基础研究和临床前研究提供了理想的动物模型。随着生命科学的发展,对非人灵长类实验动物质量提出了更高的要求,人们认识到实验时,应用健康的优质非人灵长类动物的重要性。本文简要概括了非人灵长类动物恒河猴的生物学特性,阐述了非人灵长类动物恒河猴在生殖生物学中的应用研究。  相似文献   

5.
建立有效的动物模型是研究人类疾病演进、开发新型治疗手段的重要方法。非人灵长类动物在进化发育、生理生化及病理方面和人类最接近,是研究人类疾病的理想动物模型。随着基因编辑技术的发展,研究者已经成功建立了多种模仿人类疾病的非人灵长类动物模型。但是CRISPR/Cas9的脱靶效应、嵌合突变以及基因敲入效率较低等突出问题也逐渐引起重视。本文综述了基因编辑技术在建立非人灵长类动物模型中的应用现状,提出了目前亟需解决的难点和应对策略,以期为高效、准确构建非人灵长类动物模型提供借鉴与参考。  相似文献   

6.
非人灵长类局部脑缺血动物模型研究现状   总被引:1,自引:0,他引:1  
非人灵长类动物在种系发生上较啮齿类更接近于人类,用来制备局部脑缺血模型可以更好的拟合临床症状和机理。通过对国内外非人灵长类动物局部脑缺血模型的制备方法和应用现状进行收集、分类和述评,展望非人灵长类动物模型的应用前景,尤其是利用低等灵长类动物树鼩研究缺血性中风的优势。  相似文献   

7.
目的建立非人灵长类动物胃镜检测技术。方法复方氯胺酮麻醉动物,将内镜经口腔、咽依次进入食管、胃、十二指肠,观察粘膜状况后在胃、十二指肠分别取材,术后清洗消毒内镜,动物即时苏醒。结果内镜顺利进入食管、胃及十二指肠,进镜深度分别约10cm、30cm、50cm,各段粘膜光滑平整,未见明显异常。术后动物未发生不良反应及并发症。结论非人灵长类动物胃镜检测技术的建立,为研究非人灵长类动物上消化道疾病搭建了良好的技术平台。  相似文献   

8.
魏景宽  王正波 《生命科学》2020,32(7):676-682
帕金森病是第二大神经退行性疾病,目前没有有效的治疗措施。非人灵长类动物在基因序列、大脑解剖、生殖生理和免疫系统等方面与人类有着极高的相似性,非人灵长类PD动物模型有助于阐明PD病因和发病机制,在新的治疗方法和药物研发中具有重大的应用价值。该文对当前非人灵长类PD模型研究进展作一综述。  相似文献   

9.
非人灵长类肿瘤模型研究进展(英文)   总被引:1,自引:0,他引:1  
癌症是人类第二大致死的疾病。将体外细胞模型获得的癌症研究结果向临床转化过程中,动物活体实验是必不可少的一个环节。现在的肿瘤活体实验绝大部分采用啮齿类实验动物如小鼠和大鼠,这是因为它们具有个体小、繁殖迅速、遗传背景清楚、转基因技术成熟等优势。但是啮齿类和人的亲缘关系比较远,许多从啮齿类动物模型获得的研究结果不能在人体重现。非人灵长类动物在遗传进化、免疫、生理和代谢等诸多方面与人类高度近似,理论上更加适合癌症研究。本文对现有的非人灵长类肿瘤研究做一综述,主要集中介绍用化学和生物致癌剂在不同的非人灵长类动物诱导肿瘤的研究,为将来用非人灵长类动物研究人类癌症奠定基础。  相似文献   

10.
随着生物医学技术的发展,应用非人灵长类动物模型进行基础科学研究日益广泛。与此同时,由于栖息地破坏、狩猎和基因隔离,许多非人灵长类动物濒临灭绝。因此,改进非人灵长类动物精子冻存技术对物种遗传资源的保藏具有重要的意义。本文概述了非人灵长类动物的精液特征,介绍了精液液化和冷冻精子质量评估的方法,分析了冷冻保护剂、冷冻稀释液及冷冻方法等因素对精子冻存效果的影响,总结了目前非人灵长类精子冷冻常用的冷冻保存液和冷冻方法,并对相关精子参数进行了比较,同时探讨了非人灵长类动物精子冻存研究面临的困境,并提出了可行的方案。总之,本文综述了近年来非人灵长类动物精子冻存的重要研究成果,对开发新的冷冻保护剂及改进冷冻技术具有一定的参考价值。  相似文献   

11.
The high rate of occurrence of sleep disturbances in children with attention-deficit/hyperactivity disorder (ADHD) prompted the idea that structural and neurotransmitter changes might give rise to specific sleep pattern abnormalities. The aim of this study was to evaluate the microstructure of sleep in children with ADHD who had no polysomnographically diagnosed sleep disorder, had never been treated for ADHD, and were free from any psychiatric comorbidity. Participants were 14 patients with ADHD (12 boys and 2 girls aged 7-12 years, mean age 9.6+/-1.6). ADHD was diagnosed according to DSM-IV criteria (Diagnostic and statistical manual of mental disorders). Psychiatric comorbidities were ruled out by detailed psychiatric examination. The patients underwent two consecutive overnight video-polysomnographic (PSG) recordings, with the sleep microstructure (cyclic alternating pattern - CAP) scoring during the second night. The data were compared with age- and sex-matched controls. Sleep microstructure analysis using CAP revealed no significant differences between the ADHD group and the controls in any of the parameters under study. In conclusions, no ADHD-specific alterations were found in the sleep microstructure.  相似文献   

12.
人的精神活动高级而又复杂,至今仍是未解之谜。目前研究认为多巴胺作为脑内重要神经递质,参与调节人的精神活动和运动功能,尤其在睡眠的主动性神经调节过程,以及学习记忆等认知功能的神经环路中,多巴胺都发挥着不可替代的作用。本文将通过对多巴胺神经系统,睡眠,认知功能的概述,以及通过对多巴胺神经系统与睡眠-觉醒系统和认知功能的解剖学联系的简述,结合多巴胺神经元、多巴胺受体及多巴胺转运体等不同角度分别阐述其对睡眠-觉醒和认知功能的调控作用,以期揭开人类精神活动的产生机制的一层面纱,以及对多巴胺药物对神经退行性变疾病的治疗靶点提供一定的理论支持。  相似文献   

13.
In hereditary neurodegenerative Huntington’s disease (HD), there exists a growing consideration that sleep and circadian dysregulations may be important symptoms. It is not known, however, whether sleep abnormalities contribute to other behavioral deficits in HD patients and mouse models. To determine the precise chronology for sleep physiology alterations and other sensory, motor, psychiatric and cognitive symptoms of HD, the same R6/1 HD transgenics and their wild-type littermates were recorded monthly for sleep electroencephalogram (EEG) together with a wide range of behavioral tests according to a longitudinal plan. We found an early and progressive deterioration of both sleep architecture and EEG brain rhythms in R6/1 mice, which are correlated timely with their spatial working memory impairments. Sleep fragmentation and memory impairments were accompanied by the loss of delta (1-4Hz) power in the transgenic mice, the magnitude of which increased with age and disease progression. These precocious sleep and cognitive impairments were followed by deficits in social behavior, sensory and motor abilities. Our data confirm the existence and importance of sleep physiology alterations in the widely used R6/1 mouse line and highlight their precedence over other plethoric phenotypic changes. The brainwave abnormalities, may represent a novel biomarker and point to innovative therapeutic interventions against HD.  相似文献   

14.
A high level of Interleukin-1beta (IL1B), a key mediator of inflammation, is expressed in the brain, particularly in the hippocampus, which plays a pivotal role in memory and mood regulation. In the brain, IL1B exerts a myriad of effects such as neuronal proliferation, differentiation, apoptosis, and long-term potentiation. Considering its pleiotropic effects in the brain, IL1B has been implicated in the pathogenesis of various psychiatric disorders as well as cognitive function in normal individuals. Thus, IL1B has been considered a candidate gene for the study of psychiatric diseases as well as brain function in normal individuals. The polymorphisms of IL1B have been described in relation to various expression levels in response to stimulation. This review describes previous studies on the genetic effects of IL1B, which relate it to psychiatric diseases such as major depressive disorder, bipolar disorder, schizophrenia, and Alzheimer’s disease, as well as cognitive function in normal individuals. Although many reports have indicated a possible role of the genetic effects of IL1B or its phenotypes in psychiatric diseases, some reports were unable to confirm these findings. IL1B release is mediated by an inflammatory response or psychological stress, leading to a cascade of immune reactions involving numerous immune components. To further explore the genetic effects of IL1B on mental diseases and brain function, gene–gene and gene–environment interactions should also be considered.  相似文献   

15.
Sleep disturbances are common in neurodegenerative diseases such as Alzheimer disease (AD). Unfortunately, how AD is mechanistically linked with interference of the body’s natural sleep rhythms remains unclear. Our recent findings provide insight into this question by demonstrating that sleep disruption associated with AD is driven by epigenetic changes mediated by the histone acetyltransferase (HAT) Tip60. In this study, we show that Tip60 functionally interacts with the AD associated amyloid precursor protein (APP) to regulate axonal growth of Drosophila small ventrolateral neuronal (sLNv) pacemaker cells, and their production of neuropeptide pigment dispersing factor (PDF) that stabilizes appropriate sleep-wake patterns in the fly. Loss of Tip60 HAT activity under APP neurodegenerative conditions causes decreased PDF production, retraction of the sLNv synaptic arbor required for PDF release and disruption of sleep-wake cycles in these flies. Remarkably, excess Tip60 in conjunction with APP fully rescues these sleep-wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for Tip60 in these processes. Our studies highlight the importance of epigenetic based mechanisms underlying sleep disturbances in neurodegenerative diseases like AD.  相似文献   

16.
Sleep is a fundamental biological rhythm involving the interaction of numerous brain structures and diverse neurotransmitter systems. The primary measures used to define sleep are the electroencephalogram (EEG) and electromyogram (EMG). However, EEG-based methods are often unsuitable for use in high-throughput screens as they are time-intensive and involve invasive surgery. As such, the dissection of sleep mechanisms and the discovery of novel drugs that modulate sleep would benefit greatly from further development of rapid behavioral assays to assess sleep in animal models. Here is described an automated noninvasive approach to evaluate sleep duration, latency, and fragmentation using video tracking of mice in their home cage. This approach provides a high correlation with EEG/EMG measures under both baseline conditions and following administration of pharmacological agents. Moreover, the dose-dependent effects of sedatives, stimulants, and light can be readily detected. This approach is robust yet relatively inexpensive to implement and can be easily incorporated into ongoing screening programs to provide a powerful first-pass screen for assessing sleep and allied behaviors.  相似文献   

17.
18.
In recent years, sleep abnormalities have increasingly been observed in patients with movement disorders. During sleep, most patients with Parkinson's disease also exhibit the movements characteristically seen during the wake period. Movement activity during sleep may impair sleep quality and lead to daytime sleepiness and reduced quality of life. Disordered REM sleep with enhanced muscle tone is common in patients with neurodegenerative disease, and may precede the clinically evident symptoms of Parkinson's disease by years. Sleep disorders in patients with Parkinson's disease are common, and require the application of individual treatment strategies. A further frequent disorder primarily classified as a sleep disorder (dyssomnia) is the restless legs syndrome (RLS), which is closely related to the nocturnal periodic limb movement disorder and affects up to 15% of the population. The present review focuses on nocturnal motor activity and sleep in Parkinson's disease and RLS.  相似文献   

19.
Sleep disorders are common in neurodegenerative diseases including Huntington''s disease (HD) and develop early in the disease process. Mitochondrial alterations are believed to play a critical role in the pathophysiology of neurodegenerative diseases. In the present study, we evaluated the circadian system of mice after inhibiting mitochondrial complex II of the respiratory chain with the toxin 3-nitropropionic acid (3-NP). We found that a subset of mice treated with low doses of 3-NP exhibited severe circadian deficit in behavior. The temporal patterning of sleep behavior is also disrupted in some mice with evidence of difficulty in the initiation of sleep behavior. Using the open field test during the normal sleep phase, we found that the 3-NP-treated mice were hyperactive. The molecular clockwork responsible for the generation of circadian rhythms as measured by PER2::LUCIFERASE was disrupted in a subset of mice. Within the SCN, the 3-NP treatment resulted in a reduction in daytime firing rate in the subset of mice which had a behavioral deficit. Anatomically, we confirmed that all of the treated mice showed evidence for cell loss within the striatum but we did not see evidence for gross SCN pathology. Together, the data demonstrates that chronic treatment with low doses of the mitochondrial toxin 3-NP produced circadian deficits in a subset of treated mice. This work does raise the possibility that the neural damage produced by mitochondrial dysfunction can contribute to the sleep/circadian dysfunction seen so commonly in neurodegenerative diseases.  相似文献   

20.
In recent years, the number of patients with neurodegenerative diseases (i.e., Alzheimer’s disease, Parkinson’s disease, mild cognitive impairment) and mental disorders (i.e., depression, anxiety and schizophrenia) have increased dramatically. Researchers have found that complex network analysis can reveal the topology of brain functional networks, such as small-world, scale-free, etc. In the study of brain diseases, it has been found that these topologies have undergoed abnormal changes in different degrees. Therefore, the research of brain functional networks can not only provide a new perspective for understanding the pathological mechanism of neurological and psychiatric diseases, but also provide assistance for the early diagnosis. Focusing on the study of human brain functional networks, this paper reviews the research results in recent years. First, this paper introduces the background of the study of brain functional networks under complex network theory and the important role of topological properties in the study of brain diseases. Second, the paper describes how to construct a brain functional network using neural image data. Third, the common methods of functional network analysis, including network structure analysis and disease classification, are introduced. Fourth, the role of brain functional networks in pathological study, analysis and diagnosis of brain functional diseases is studied. Finally, the paper summarizes the existing studies of brain functional networks and points out the problems and future research directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号