首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
赵艳娜  魏珑  徐舫舟  赵捷  田杰  王越 《生物磁学》2009,(16):3128-3130
目的:研究去除心电信号中的基线漂移、工频干扰和肌电干扰等噪声,提高心电信号的自动识别和诊断精度。方法:利用Coif4小波对心电信号进行8尺度分解,采用小波分解重构法去除基线漂移,然后利用改进的小波闽值算法去除工频干扰和肌电干扰。结果:利用Matlab仿真工具,选择MIT-BIH心率失常数据库中信号进行验证,能有效去除这三种噪声,并且很好的保持R波的信息。结论:本算法在不丢失心电信号有用信息的前提下,可以较好的去除三种常见的噪声,可以用于心电信号自动分析之前的预处理。  相似文献   

2.
一种基于小波变换的心电去噪算法   总被引:1,自引:0,他引:1  
目的:去除心电信号采集过程中混入的工频干扰、肌电干扰和基线漂移等噪声信号,并能有效的保留心电特征信息.方法:通过小波变换将含噪的心电信号分解并重构得到不同尺度下的细节信号,在中小尺度上选取不同的门限值,并在QRS波群信息多的尺度上计算获得信息窗,对该尺度的信息窗内外采用不同的门限处理方式,在大尺度上直接重构出要去除的基线信息.结果:采用MIT/BIH Arrhythmia Database中的数据对算法进行了仿真验证,实现了三种主要干扰的去除,较好的保留了心电特征信息.结论:本方法效果较好,为后续的特征点识别奠定了基础.  相似文献   

3.
本文将集合经验模态分解(EEMD)与小波软阈值去噪算法相结合,提出了一种新的心电图信号去噪EEMD-WS算法.算法首先对信号进行EEMD分解得到有限个固有模态函数(IMF);其次,根据实际含噪心电信号中各成分的特性,将所有IMF分为低阶含噪、中阶有用信号和高阶含基线漂移三类,对于低阶含噪IMF利用IMF能量变化分界点自适应地确定含噪IMF个数,随后对其利用小波收缩算法中的启发式软阈值选择算法进行去噪;对于高阶含基线漂移IMF根据其自身是否包含周期信息自适应地判断并去除与基线漂移关系密切的IMF.最后通过将滤除噪声的低阶IMF、中阶有用信号重构达到抑制噪声和去除基线漂移的目的.仿真信号和MIT-BIH心电数据库真实心电信号实验显示,EEMD-WS算法不仅能够克服小波去噪算法不能去除基线漂移的不足,而且能够比常用的EMD-WS算法更好地提高消噪效果,总体去噪性能优于传统算法.  相似文献   

4.
小波变换是近年来兴起的热门信号处理技术,是一种非常有用的信号处理工具。本文阐述了连续小波去噪和离散小波去噪的原理,分析了基于小波去噪的几种不同方法(其中包括小波分解与重构,小波变换阈值法,小波变换模极大值法,以及它与独立分量分析相结合去除噪声的方法等)。通过检测和验证,表明该方法能较好的实现心电信号的消噪,都取得了较好的效果;同时,比较了每种方法的不足和缺陷。基于小波变换心电信号消噪的研究进展较快,通过多种方法结合运用进行消噪并取得了很好的效果,展望了利用基于小波变换心电信号消噪的前景。  相似文献   

5.
目的:本文以设计的表面肌电(sEMG)信号采集系统为基础,探讨sEMG信号中的降噪处理问题。方法:结合sEMG信号的噪声影响情况,首先利用带通滤波器消除肌电信号频带外噪声,再通过频谱插值法来抑制工频干扰分量,最后使用小波分析方法来削弱肌电信号频带内噪声。结果:通过对检测sEMG信号的降噪处理,信号噪声得到明显抑制。结论:所设计采集系统能够获得满意的sEMG信号检测效果,所采用降噪方法能够有效提高sEMG信号的质量。  相似文献   

6.
脑电(electroencephalography,EEG)信号中不可避免地存在着眼动、心跳、肌电信号以及线性噪声等伪迹干扰,这些伪迹的存在极大地影响了脑电信号分析的准确性,因此在进行脑电信号分析前需要去除伪迹干扰。为了有效地去除伪迹,结合独立元分析和非线性指数分析,提出一种自动识别并去除脑电信号中伪迹分量的方法。该方法还可同时用于提取脑电信号中的基本节律如!波等。相应的模拟与实际脑电数据的实验结果表明所提议的方法具有很好的识别和去除脑电信号伪迹分量的性能。  相似文献   

7.
本文描述了一种基于两进小波变换(DYWT)的QRS波检测器。小波尺度的选择是基于心电信号的频谱的特点,并根据多尺度选择方法判决检测心电QRS波,实验结果表明,对于在有强大的噪声和严重的基线漂移干扰下的心电信号能够有效的识别。  相似文献   

8.
付聪  李强  李博 《生物磁学》2011,(20):3951-3953
目的:本文以设计的表面~g(sEMG)信号采集系统为基础,探讨sEMG信号中的降噪处理问题。方法:结合sEMG信号的噪声影响情况,首先利用带通滤波器消除肌电信号频带外噪声,再通过频谱插值法来抑制工频干扰分量,最后使用小波分析方法来削弱肌电信号频带内噪声。结果:通过对检测sEMG信号的降噪处理,信号噪声得到明显抑制。结论:所设计采集系统能够获得满意的sEMG信号检测效果,所采用降噪方法能够有效提高sEMG信号的质量。  相似文献   

9.
心音信号噪声消除的小波变换方法   总被引:1,自引:0,他引:1  
心音信号幅值小,干扰多,采用常规的时、频域滤波方法往往不能收到良好的效果,本文根据信号和干扰在小波变换下的不同变化特性,利用二进小波变换的模极大值识别出心音信号中的干扰噪声的位置,剔除其相应的小波变换系数后,再通过小波逆变换重构出心音信号,并根据心音信号的特点选取了适当的母小波和分解尺度,给出了利用小波方法去噪前后的实际结果,结果表明,小波变换方法可有效地消除心音信号中的噪声干扰。  相似文献   

10.
基于经验模态分解(EMD)理论,提出一种左右手运动想象脑电信号分析方法。首先利用时间窗对脑电信号数据进行划分,对每段数据通过经验模态分解法将其分解为一组固有模态函数IMF,提取主要信号所在的IMF层去除信号中的噪声。对含有主要信号的几层IMF进行Hilbert变换,得到瞬时频率与对应的瞬时幅值。再提取左右手想象的特定频段mu节律和beta节律的能量信号作为特征,分别利用支持向量机(SVM)和Fisher进行了分类比较。对EMD和小波包在去噪和特征提取进行了比较。结果表明,EMD是一种很有效的去噪方法,经过EMD分解后提取的能量信号在区分左右手想象上更具有优势,识别率高。  相似文献   

11.
In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS–wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97 dB and 0.02 respectively and a significantly higher correlation coefficient (p < 0.05).  相似文献   

12.
介绍一种用硬、软件系统实现的滤波器,它能实时滤除ECG信号中50Hz及其高次谐波的干扰,该技术称为符合滤波。在信号处理过程中,当干扰发生变化时滤波器能跟踪这种变化,保持滤波器性能不变。  相似文献   

13.
Y. Slim  K. Raoof 《IRBM》2010,31(4):209-220
The signal to noise ratio (SNR) of surface respiratory electromyography signal is very low. Indeed EMG signal is contaminated by different types of noise especially the cardiac artefact ECG. This article explores the problem of removing ECG artefact from respiratory EMG signal. The new method uses an adaptive structure with an electrocardyographic ECG reference signal carried out by wavelet decomposition. The proposed algorithm requires only one channel to both estimating the adaptive filter input reference noise and the respiratory EMG signal. This new technique demonstrates how two steps will be combined: the first step decomposes the signal with forward discrete wavelet transform into sub-bands to get the wavelet coefficients. Then, an improved soft thresholding function was applied. And the ECG input reference signal is reconstructed with the transformed coefficients whereas, the second uses an adaptive filter especially the LMS one to remove the ECG signal. After trying statistical as well as mathematical analysis, the complete investigation ensures that all details and steps make proof that our rigorous method is appropriate. Compared to the results obtained using previous techniques, the results achieved using the new algorithm show a significant improvement in the efficiency of the ECG rejection.  相似文献   

14.
BACKGROUND: The presence of parasite interference signals could cause serious problems in the registration of ECG signals and many works have been done to suppress electromyogram (EMG) artifacts noises and disturbances from electrocardiogram (ECG). Recently, new developed techniques based on global and local transforms have become popular such as wavelet shrinkage approaches (1995) and time-frequency dependent threshold (1998). Moreover, other techniques such as artificial neural networks (2003), energy thresholding and Gaussian kernels (2006) are used to improve previous works. This review summarizes windowed techniques of the concerned issue. METHODS AND RESULTS: We conducted a mathematical method based on two sets of information, which are dominant scale of QRS complexes and their domain. The task is proposed by using a varying-length window that is moving over the whole signals. Both the high frequency (noise) and low frequency (base-line wandering) removal tasks are evaluated for manually corrupted ECG signals and are validated for actual recorded ECG signals. CONCLUSIONS: Although, the simplicity of the method, fast implementation, and preservation of characteristics of ECG waves represent it as a suitable algorithm, there may be some difficulties due to pre-stage detection of QRS complexes and specification of algorithm's parameters for varying morphology cases.  相似文献   

15.
《IRBM》2014,35(6):351-361
Nowadays, doctors use electrocardiogram (ECG) to diagnose heart diseases commonly. However, some nonideal effects are often distributed in ECG. Discrete wavelet transform (DWT) is efficient for nonstationary signal analysis. In this paper, the Symlets sym5 is chosen as the wavelet function to decompose recorded ECG signals for noise removal. Soft-thresholding method is then applied for feature detection. To detect ECG features, R peak of each heart beat is first detected, and the onset and offset of the QRS complex are then detected. Finally, the signal is reconstructed to remove high frequency interferences and applied with adaptive searching window and threshold to detect P and T waves. We use the MIT-BIH arrhythmia database for algorithm verification. For noise reduction, the SNR improvement is achieved at least 10 dB at SNR 5 dB, and most of the improvement SNR are better than other methods at least 1 dB at different SNR. When applying to the real portable ECG device, all R peaks can be detected when patients walk, run, or move at the speed below 9 km/h. The performance of delineation on database shows in our algorithm can achieve high sensitivity in detecting ECG features. The QRS detector attains a sensitivity over 99.94%, while detectors of P and T waves achieve 99.75% and 99.7%, respectively.  相似文献   

16.
Electrocardiogram (ECG) is a vital sign monitoring measurement of the cardiac activity. One of the main problems in biomedical signals like electrocardiogram is the separation of the desired signal from noises caused by power line interference, muscle artifacts, baseline wandering and electrode artifacts. Different types of digital filters are used to separate signal components from unwanted frequency ranges. Adaptive filter is one of the primary methods to filter, because it does not need the signal statistic characteristics. In contrast with Fourier analysis and wavelet methods, a new technique called EMD, a fully data-driven technique is used. It is an adaptive method well suited to analyze biomedical signals. This paper foregrounds an empirical mode decomposition based two-weight adaptive filter structure to eliminate the power line interference in ECG signals. This paper proposes four possible methods and each have less computational complexity compared to other methods. These methods of filtering are fully a signal-dependent approach with adaptive nature, and hence it is best suited for denoising applications. Compared to other proposed methods, EMD based direct subtraction method gives better SNR irrespective of the level of noises.  相似文献   

17.
《IRBM》2020,41(5):252-260
ObjectiveMonitoring the heartbeat of the fetus during pregnancy is a vital part in determining their health. Current fetal heart monitoring techniques lack the accuracy in fetal heart rate monitoring and features acquisition, resulting in diagnostic medical issues. The demand for a reliable method of non-invasive fetal heart monitoring is of high importance.MethodElectrocardiogram (ECG) is a method of monitoring the electrical activity produced by the heart. The extraction of the fetal ECG (FECG) from the abdominal ECG (AECG) is challenging since both ECGs of the mother and the baby share similar frequency components, adding to the fact that the signals are corrupted by white noise. This paper presents a method of FECG extraction by eliminating all other signals using AECG. The algorithm is based on attenuating the maternal ECG (MECG) by filtering and wavelet analysis to find the locations of the FECG, and thus isolating them based on their locations. Two signals of AECG collected at different locations on the abdomens are used. The ECG data used contains MECG of a power of five to ten times that of the FECG.ResultsThe FECG signals were successfully isolated from the AECG using the proposed method through which the QRS complex of the heartbeat was conserved, and heart rate was calculated. The fetal heart rate was 135 bpm and the instantaneous heart rate was 131.58 bpm. The heart rate of the mother was at 90 bpm with an instantaneous heart rate of 81.9 bpm.ConclusionThe proposed method is promising for FECG extraction since it relies on filtering and wavelet analysis of two abdominal signals for the algorithm. The method implemented is easily adjusted based on the power levels of signals, giving it great ease of adaptation to changing signals in different biosignals applications.  相似文献   

18.
A method to denoise single-molecule fluorescence resonance energy (smFRET) trajectories using wavelet detail thresholding and Bayesian inference is presented. Bayesian methods are developed to identify fluorophore photoblinks in the time trajectories. Simulated data are used to quantify the improvement in static and dynamic data analysis. Application of the method to experimental smFRET data shows that it distinguishes photoblinks from large shifts in smFRET efficiency while maintaining the important advantage of an unbiased approach. Known sources of experimental noise are examined and quantified as a means to remove their contributions via soft thresholding of wavelet coefficients. A wavelet decomposition algorithm is described, and thresholds are produced through the knowledge of noise parameters in the discrete-time photon signals. Reconstruction of the signals from thresholded coefficients produces signals that contain noise arising only from unquantifiable parameters. The method is applied to simulated and observed smFRET data, and it is found that the denoised data retain their underlying dynamic properties, but with increased resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号