首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
Kunitz 型丝氨酸蛋白酶抑制剂结构与功能研究   总被引:2,自引:0,他引:2  
蛋白酶抑制剂在酶学及蛋白质的结构与功能关系研究中有重要意义,Kunitz型丝氨酸蛋白酶抑制剂是其中最重要的,也是研究最广泛的蛋白酶抑制剂之一.该类蛋白酶抑制剂三维结构高度保守:由一个明显的疏水核心、三对高度保守的二硫键桥、三链β-折叠和一个N端3 10螺旋及一个C端α-螺旋组成.3对二硫键对分子空间结构的稳定起着非常重要的作用.这一类型抑制剂有5个主要的活性位点:P1、P1’、P3、P3’、P4,它们都位于一个溶剂暴露的环上.P1位点是抑制作用的关键活性位点,抑制剂的专一性由P1位点氨基酸残基的性质决定;P1’位点氨基酸残基的侧链大小对抑制剂.酶的结合常数有很大影响,用大的侧链残基取代会导致结合常数降低;P4位点残基被取代经常产生负效应,会导致活性区域环的构象发生很大改变,从而影响酶与抑制剂的结合.  相似文献   

2.
【目的】探究Kazal型丝氨酸蛋白酶抑制剂KaSPI在大豆蚜Aphis glycines的生长发育、消化和免疫防御等过程中的作用。【方法】基于大豆蚜转录组数据PCR克隆大豆蚜Kazal型丝氨酸蛋白酶抑制剂基因cDNA序列;qRT-PCR分别检测AgKaSPI在大豆蚜1-4龄若虫和成虫以及蜡蚧刺束梗孢菌Akanthomyces  相似文献   

3.
刘云杨  蒋帅  李谦  孔毅 《生物工程学报》2021,37(11):3988-4000
Kunitz型丝氨酸蛋白酶抑制剂是一类普遍存在的蛋白酶抑制剂,在体内各项生命活动中扮演着重要角色。这类抑制剂结构稳定且富有特色,通常具有一个或几个串联存在的Kunitz结构域,能够以类似底物的方式与丝氨酸蛋白酶结合,从而抑制酶的活性。在功能方面,Kunitz型丝氨酸蛋白酶抑制剂参与凝血和纤维蛋白溶解、肿瘤免疫、炎症调节以及抵抗细菌、真菌感染等过程。文中就Kunitz型丝氨酸蛋白酶抑制剂研究进展作一综述,为新型Kunitz型丝氨酸蛋白酶抑制剂的开发提供研究思路。  相似文献   

4.
正节肢动物中丝氨酸蛋白酶(SP)及其同源蛋白是蛋白酶中的一个超家族,参与多种生命活动,且受丝氨酸蛋白酶抑制剂(SPI)的严格调控。Kazal型SPI(KaSPI)是最为保守的一类。为了探究KaSPI在大豆蚜Aphisglycines生存和抵御病原入侵中的作用,东北农业大学农学院陈雅茹和樊东等克隆测定了大豆蚜KaSPI基因AgKaSPI的cDNA序列,分别检测了AgKaSPI在其不同发育阶段以及蜡蚧刺束梗孢菌Akanthomyceslecanii侵染后不同时间其成虫体内的表达水平,并测定分析了RNAi干扰AgKaSPI后其成虫体内AgKaSPI含量,丝氨酸蛋白酶、胰蛋白酶和胰凝乳蛋白酶活性及蜡蚧刺束梗孢菌侵染成虫的死亡率变化,结果表明AgKaSPI可能通过调节丝氨酸蛋白酶活性参与了大豆蚜对蜡蚧刺束梗孢菌的免疫反应(pp.908-919)。  相似文献   

5.
运用生物信息学的方法,对已在GenBank数据库中注册的大豆、海红豆、凤凰木、象耳豆及洋紫荆等植物Kunitz蛋白酶抑制剂的氨基酸序列进行分析.结果显示,这些植物的Kunitz蛋白酶抑制剂中甘氨酸、谷氨酸、亮氨酸、丝氨酸、天冬氨酸及缬氨酸含量较丰富;不同植物Kunitz蛋白酶抑制剂的氨基酸序列具有较高的同源性,其中P1位点的氨基酸残基序度保守;分子进化研究表明Kunitz蛋白酶抑制剂可作为植物遗传分化和分子进化研究的重要依据;部分序列中存在信号肽;分子中不存在跨膜结构域,可能受蛋白激酶C的磷酸化;无规卷曲是多肽链中的主要结构元件;分子中包含典型的STI功能结构域.  相似文献   

6.
目的:克隆得到人丝氨酸蛋白酶抑制因子Hespintor基因,并应用生物信息学方法进行序列分析。方法:提取HepG2细胞总RNA,RT-PCR扩增Hespintor基因片段,连接至pMD 20-T克隆载体中,转化JM109宿主菌,蓝白斑法筛选阳性克隆菌落,菌落PCR及测序鉴定。利用在线工具软件对Hespintor进行信号肽预测、亚细胞定位、结构域、三级结构、基因染色体定位及组织分布表达分析。结果:人丝氨酸蛋白酶抑制因子Hespintor基因全长285bp,共编码94aa,其中1-23aa编码信号肽,符合亚细胞定位于细胞外的预测;53-93aa编码一个典型的Kazal结构域。Hespintor基因的染色体定位于5号染色体短臂3区3带1亚带(5q33.1);正常组织中仅在睾丸有表达,而肿瘤组织中仅在生殖细胞瘤有表达。结论:Hespintor是一个在机体中静止表达的Ka-zal型丝氨酸蛋白酶抑制因子家族的分泌型新成员。  相似文献   

7.
丝氨酸蛋白酶抑制剂(Serine Protease Inhibitor,SPI)通过抑制靶蛋白活性参与调节内源蛋白平衡,并在植物发育、防御机制中发挥重要作用。该研究利用RACE技术克隆获得百子莲(Agapanthus praecox ssp.orientalis)ApSPI基因全长序列,构建了E.coli Transetta(pET-32a-ApSPI)重组菌株,并检测重组菌株在不同非生物胁迫下的耐受性。结果显示:(1)ApSPI基因全长为652 bp,开放阅读框为366 bp,编码122个氨基酸。(2)ApSPI蛋白含有一个N端信号肽和一个典型的Kazal结构域,是一种Kazal型丝氨酸蛋白酶抑制剂。重组蛋白最佳诱导温度为37℃,诱导时间6 h,IPTG浓度为0.1 mmol·L~(-1),且主要以可溶性形式存在。(3)重组菌非生物胁迫耐受性研究发现,重组菌Transetta(pET-32a-ApSPI)对NaCl(200~400 mmol·L~(-1))、KCl(200~400 mmol·L~(-1))和PEG6000(5%)的耐受性明显高于对照菌株Transetta(pET-32a)。研究表明,过表达ApSPI蛋白增强了大肠杆菌对盐、干旱胁迫的抗性,为进一步研究ApSPI在植物抗逆中的作用奠定了基础。  相似文献   

8.
丝氨酸蛋白酶是昆虫体内一类重要的消化酶, 为了了解该类酶的分子特性及功能, 本研究利用粉纹夜蛾Trichoplusia ni围食膜蛋白多克隆抗体筛选华北大黑鳃金龟Holotrichia oblita中肠cDNA表达文库, 首次得到编码华北大黑鳃金龟丝氨酸蛋白酶cDNA序列, 命名为HoSP1(GenBank登录号为FJ573146)。序列分析表明, 该基因长902 bp, 开放阅读框(ORF)长783 bp, 编码260个氨基酸, 推测分子量和pI值分别为26.7 kDa和4.19, 不含有N-糖基化位点, 但在Thr157处有一个O-糖基化位点, 含有6个保守的半胱氨酸残基, 组成3对二硫键, 对于维持蛋白质的三级结构起着重要的作用。通过与几种丝氨酸蛋白酶的比对发现, 该酶具有组氨酸(His)、 天冬氨酸(Asp)、 丝氨酸(Ser)催化中心, 与褐新西兰肋翅鳃金龟Costelytra zealandica的14种丝氨酸蛋白酶有明显的相似性, 其中与CzSP3的序列一致性最高, 为52.47%。把该基因与pET21b载体重组后, 进行体外表达, 以BTEE为底物, 测得该酶的活力为0.0378 μmol/mg·min。HoSP1基因的克隆及体外表达为进一步研究该酶在华北大黑鳃金龟体内的表达及功能提供了依据。  相似文献   

9.
<正>丝氨酸蛋白酶抑制剂广泛存在于动物、植物及微生物体内[1],是一类丝氨酸蛋白酶活性调节剂,能调节生物体内许多重要的生命过程,如蛋白质折叠、血凝、补体激活、炎症反应、细胞迁移、细胞基质重建、以及肿瘤抑制等[2,3],很多已被开发为新药,在临床上有广泛应用。基于  相似文献   

10.
竹叶青蛇毒丝氨酸蛋白酶的分子克隆和序列比较   总被引:3,自引:0,他引:3  
李文辉  高荣  张云 《动物学研究》2003,24(3):180-185
利用逆转录酶与聚合酶链反应相结合的RT—PCR法,扩增出5个竹叶青(Trimeresurus stejnegeri)蛇毒丝氨酸蛋白酶的cDNAs;将扩增的cDNA片段克隆入pGEM-T载体中,筛选得到它们的基因,分别命名为TSSP-1、TSSP-2、TSSP-3、TSSP-4和TSSP-5。经末端终止法测定核苷酸序列,推导出5个丝氨酸蛋白酶的全序列;结合纯化的蛋白酶N-末端序列测定结果,推导TSSP-2、-3和-4分别编码凝血酶样酶stejnobin、纤溶酶stejnefibrase 1和2。5个丝氨酸蛋白酶分别含有1~6个N-型糖基结合位点,表明它们的计算分子量与纯化蛋白表观分子量之间的差异是由糖含量的不同造成,而其氨基酸序列相似度在60%~90%。TSSP-1和-2编码的成熟蛋白酶由236个氨基酸残基组成,TSSP-3、-4和-5的则由234个氨基酸残基组成。TSSP-1编码的蛋白酶在组成丝氨酸蛋白酶三联体催化活性中心产生了His^41-Arg^41的天然突变,这与其他自然界已发现的丝氨酸蛋白酶明显不同。  相似文献   

11.
For many protein families, such as serine proteinases or serine proteinase inhibitors, the family assignment predicts reactivity only in general terms. Both detailed specificity and quantitative reactivity are lacking. We believe that, for many such protein families, algorithms can be devised by defining the subset of n functionally important sequence positions, making the 19n possible single mutants and measuring their reactivity. Given the assumption that the contributions of the n positions are additive, the reactivities of the 20(n) variants can be predicted. This is illustrated by an almost complete algorithm for the Kazal family of protein inhibitors of serine proteinases.  相似文献   

12.
The crystal structure of the complex of a bacterial alkaline serine proteinase, subtilisin BPN', with its proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor) was solved at 2.6 A resolution. Compared with other similar complexes involving serine proteinases of the trypsin family, the present structure is unique in several respects. (1) In addition to the usual antiparallel beta-sheet involving the P1, P2 and P3 residues of the inhibitor, the P4, P5 and P6 residues form an antiparallel beta-sheet with a previously unnoticed chain segment (residues 102 through 104, which was named the S4-6 site) of subtilisin BPN'. (2) The S4-6 site does not exist in serine proteinases of the trypsin family, whether of mammalian or microbial origin. (3) Global induced-fit movement seems to occur on SSI: a channel-like structure in SSI where hydrophobic side-chains are sandwiched between two lobes becomes about 2 A wider upon complexing with subtilisin. (4) The complex is most probably a Michaelis complex, as in most of the other complexes. (5) The main role of the "secondary contact region" of SSI seems to be to support the reactive site loop ("primary contact region"). Steric homology of the two contact regions between the inhibitors of the SSI family and the pancreatic secretory trypsin inhibitor-ovomucoid inhibitor family is so high that it seems to indicate divergent evolutionary processes and to support the general notion as to the relationship of prokaryotic and eukaryotic genes put forward by Doolittle (1978).  相似文献   

13.
Proteinaceous serine proteinase inhibitors are widespread throughout the plant kingdom where they play an important role in protection against pests and pathogens. Here, we describe the isolation and characterisation of a novel 14 amino acid residue cyclic peptide from sunflower seeds, which is a potent inhibitor of trypsin (Ki=100 pM). The crystal structure of this peptide in complex with bovine beta-trypsin shows both sequence and conformational similarity with the trypsin-reactive loop of the Bowman-Birk family of serine proteinase inhibitors. This inhibitor, however, is unique in being monofunctional, cyclic and far shorter (14 amino acid residues) than inhibitors belonging to this family (typically 60-70 amino acid residues). The high potency of this peptide is likely to arise from the considerable structural rigidity achieved through its cyclic nature which is further stabilised by a single internal disulphide bond. This study helps delineate the minimal unit required for effective peptide inhibitors of serine proteinases, and will assist in the further design of inhibitors to this widespread class of enzymes.  相似文献   

14.
Michael Laskowski Jr. (1930-2004) was a pioneer in the field of Standard mechanism serine proteinase inhibitors. He made numerous important contributions in the field. This article highlights some of his most important contributions such as the discovery of the reactive site in serine proteinase inhibitors, the proposal of the Standard mechanism of inhibition, and the sequence to reactivity algorithm for the Kazal family of inhibitors.  相似文献   

15.
Bovine pancreatic trypsin inhibitor (BPTI) is a 58-residue protein with three disulfide bonds that belongs to the Kunitz family of serine proteinase inhibitors. BPTI is an extremely potent inhibitor of trypsin, but it also specifically binds to various active and inactive serine proteinase homologs with KD values that range over eight orders of magnitude. We previously described an interaction of BPTI at an intracellular site that results in the production of discrete subconductance events in large conductance Ca2+ activated K+ channels (Moss, G.W.J., and E. Moczydlowski. 1996, J. Gen. Physiol, 107:47-68). In this paper, we summarize a variety of accumulated evidence which suggests that BPTI binds to a site on the KCa channel protein that structurally resembles a serine proteinase. One line of evidence includes the finding that the complex of BPTI and trypsin, in which the inhibitory loop of BPTI is masked by interaction with trypsin, is completely ineffective in the production of substate events in the KCa channel. To further investigate this notion, we performed a sequence analysis of the alpha-subunit of cloned slowpoke KCa channels from Drosophila and mammals. This analysis suggests that a region of approximately 250 residues near the COOH terminus of the KCa channel is homologous to members of the serine proteinase family, but is catalytically inactive because of various substitutions of key catalytic residues. The sequence analysis also predicts the location of a Ca(2+)-binding loop that is found in many serine proteinase enzymes. We hypothesize that this COOH-terminal domain of the slowpoke KCa channel adopts the characteristic double-barrel fold of serine proteinases, is involved in Ca(2+)-activation of the channel, and may also bind other intracellular components that regulate KCa channel activity.  相似文献   

16.
The Solanum lycopersicum aspartic protease inhibitor (SLAPI), which belongs to the STI-Kunitz family, is an effective inhibitor of the aspartic proteases human cathepsin D and Saccharomyces proteinase A. However, in contrast with the large number of studies on the inhibition mechanism of the serine proteases by the STI-Kunitz inhibitors, the structural aspects of the inhibition mechanism of aspartic proteases from this family of inhibitors are poorly understood. In the present study, we have combined sequence and structural analysis methods with protein-protein docking to gain a better understanding of the SLAPI inhibition mechanism of the proteinase A. The results suggest that: i) SLAPI loop L9 may be involved in the inhibitor interaction with the proteinase A′s active site, and ii) the residues I144, V148, L149, P151, F152 and R154 are implicated in the difference in the potency shown previously by SLAPI and another STI-Kunitz inhibitor isolated from Solanum tuberosum to inhibit proteinase A. These results will be useful in the design of site directed mutagenesis experiments to understand more thoroughly the aspartic protease inhibition mechanism of SLAPI and other related STI-Kunitz inhibitors.  相似文献   

17.
Structural basis of the endoproteinase-protein inhibitor interaction   总被引:9,自引:0,他引:9  
Proteolytic enzymes are potentially hazardous to their protein environment, so that their activity must be carefully controlled. Living organisms use protein inhibitors as a major tool to regulate the proteolytic activity of proteinases. Most of the inhibitors for which 3D structures are available are directed towards serine proteinases, interacting with the active sites in a 'canonical' i.e. substrate-like manner via an exposed reactive site loop of conserved conformation. More recently, some non-canonically binding serine proteinase inhibitors directed against coagulation factors, in particular thrombin, a few cysteine proteinase inhibitors inhibitory towards papain-like proteinases, and three zinc endopeptidase inhibitors directed against metzincins and thermolysin have been characterised in the free and complexed state, displaying novel mechanisms of inhibition with their target proteinases. These different interaction modes are presented and briefly discussed with respect to the different strategies applied by nature.  相似文献   

18.
The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.  相似文献   

19.
Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N-terminus, a reactive centre loop sequence, and the second order association rate constant (ka') for irreversible complex formation with pancreas serine proteinases at 24 degrees C were determined for each inhibitor. OSZa and OSZb, both with the reactive centre scissile bond P1-P1' Thr downward arrow Ser, were efficient inhibitors of pancreas elastase (ka' > 105M-1 s-1). Only OSZb was also an inhibitor of chymotrypsin at the same site (ka' = 0.9 x 105M-1 s-1). OSZc was a fast inhibitor of trypsin at P1-P1' Arg downward arrow Ser (ka' = 4 x 106M-1 s-1); however, the OSZc-trypsin complex was short-lived with a first order dissociation rate constant kd = 1.4 x 10-4 s-1. OSZc was also an inhibitor of chymotrypsin (ka' > 106M-1 s-1), presumably at the overlapping site P2-P1 Ala downward arrow Arg, but > 90% of the serpin was cleaved as substrate. OSZd was cleaved by chymotrypsin at the putative reactive centre bond P1-P1' Tyr downward arrow Ser, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins compensate for the low content of reversible inhibitors of serine proteinases in oats in protection of the grain against pests or pathogens.  相似文献   

20.
Trypsin-like enzymes from the salivary gland complex (SGC) of Lygus hesperus Knight were partially purified by preparative isoelectric focusing (IEF). Enzyme active against Nalpha-benzoyl-L-arginine-p-nitroanilide (BApNA) focused at approximately pH 10 during IEF. This alkaline fraction gave a single activity band when analyzed with casein zymograms. The serine proteinase inhibitors, phenylmethylsulfonyl fluoride (PMSF) and lima bean trypsin inhibitor, completely inhibited or suppressed the caseinolytic activity in the crude salivary gland extract as well as the IEF-purified sample. Chicken egg white trypsin inhibitor also inhibited the IEF-purified sample but was not effective against a major caseinolytic band in the crude salivary gland extract. These data indicated the presence of serine proteinases in the SGC of L. hesperus. Cloning and sequencing of a trypsin-like precursor cDNA provided additional direct evidence for serine proteinases in L. hesperus. The encoded trypsin-like protein included amino acid sequence motifs, which are conserved with five homologous serine proteinases from other insects. Typical features of the putative trypsin-like protein from L. hesperus included residues in the serine proteinase active site (His(89), Asp(139), Ser(229)), conserved cysteine residues for disulfide bridges, residues (Asp(223), Gly(252), Gly(262)) that determine trypsin specificity, and both zymogen signal and activation peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号