首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
This study examined proteolytic enzymes and serine proteinase inhibitors in turkey seminal plasma with relation to their distribution within the reproductive tract and to yellow semen syndrome (YSS). Proteases of blood plasma, extracts from the reproductive tract, and seminal plasma were analyzed by gelatin zymography. We found a clear regional distribution of proteolytic enzymes in the turkey reproductive tract. Each part was characterized by a unique profile of serine proteolytic enzymes of molecular weights ranging from 29 to 88 kDa. The ductus deferens was found to be a site of very intense proteolytic activity. Two metalloproteases of 58 and 66 kDa were detected in all parts of the reproductive tract and seminal plasma. Using electrophoretic methods for detection of anti-trypsin activity, we found three serine proteinase inhibitors in turkey seminal plasma. Two inhibitors were found in the testis and epididymis and a third in the ductus deferens and seminal plasma. Blood plasma was characterized by the presence of two metalloproteinases and one serine proteinase inhibitor (of low migration rate) that were also detected in the reproductive tract. Amidase and anti-trypsin activities (expressed per gram of protein) differed for yellow and white seminal plasma. We concluded that turkey seminal plasma contains metalloproteases, serine proteinases, and serine proteinase inhibitors. The metalloproteases and one proteinase inhibitor are related to blood proteinases but the other two inhibitors and serine proteinases seem to be unique for the reproductive tract.  相似文献   

2.
Demonstration of a new acrosin inhibitor in human seminal plasma   总被引:2,自引:0,他引:2  
We have recently described the purification and characterization of a tumor-associated trypsin inhibitor (TATI). Studies on its N-terminal sequence suggested identity with the pancreatic secretory trypsin inhibitor (PSTI) (Huhtala, M.-L., Pesonen, K., Kalkkinen, N. & Stenman, U.-H. (1982) J. Biol. Chem. 257, 13713-13716). I report here the occurrence of a TATI-like activity in human seminal plasma. Concentrations of this inhibitor in seminal plasma varied considerably (4-500 ng/ml, n = 50). In radioimmunoassay the dose-response curves of the new seminal plasma inhibitor and purified TATI were parallel. The similarity between these two inhibitors was demonstrated by gel filtration, reverse phase liquid chromatography and ion-exchange chromatography. By ion exchange chromatography the new inhibitor could be separated from the main seminal plasma trypsin inhibitors. Purified TATI was shown to inhibit human acrosin effectively.  相似文献   

3.
Low molecular mass serine proteinase inhibitors isolated from human articular cartilage, intervertebral disc, meniscus, and costal cartilage were compared chromatographically. Similar charge and size properties were exhibited when these inhibitors were examined by gel permeation and cation exchange chromatography. The individual proteinase inhibitory species separated by these procedures all cross-reacted with a polyclonal antibody raised against the mucous proteinase inhibitors (MPIs) obtained from human bronchial secretions, however the distribution of these MPI-like species varied with the origin of the connective tissue. The major inhibitory species present in human articular cartilage and intervertebral disc were purified to homogeneity using gel filtration, cation exchange, trypsin affinity and high performance reverse phase chromatography. The amino-terminal sequences of the purified cartilage intervertebral disc inhibitors was found to be identical to the published sequence of MPIs isolated from parotid and seminal secretions. These findings indicate that the endogenous small molecular mass cationic serine proteinase inhibitory proteins present in human cartilaginous connective tissues are members of the MPI family of proteinase inhibitors.  相似文献   

4.
A protein proteinase inhibitor was purified from a seed extract of amaranth (Amaranthus hypochondriacus) by precipitation with (NH4)2SO4, gel-filtration chromatography, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography. It is a 69-amino acid protein with a high content of valine, arginine, and glutamic acid, but lacking in methionine. The inhibitor has a relative molecular weight of 7400 and an isoelectric point of 7.5. It is a serine proteinase inhibitor that recognizes chymotrypsin, trypsin, and trypsin-like proteinase activities extracted from larvae of the insect Prostephanus truncatus. This inhibitor belongs to the potato-I inhibitor family, showing the closest homology (59.5%) with the Lycopersicum peruvianum trypsin inhibitor, and (51%) with the proteinase inhibitor 5 extracted from the seeds of Cucurbita maxima. The position of the lysine-aspartic acid residues present in the active site of the amaranth inhibitor are found in almost the same relative position as in the inhibitor from C. maxima.  相似文献   

5.
The amino acid sequence of the carboxyl-terminal half of barley trypsin inhibitor was found to be significantly similar to the whole sequence of bovine pancreatic secretory trypsin inhibitor (Kazal). Kazal type inhibitors and related proteins are known for the extraordinary mode of divergence among animals, and the present observation extends this to a plant for the first time. The present observation together with our previous finding of sequence homology between barley trypsin inhibitor and wheat alpha-amylase inhibitor (Odani, S., Koide, T., & Ono, T. (1982) FEBS Lett. 141, 279-282) suggest an unusual evolutionary relationship between cereal enzyme inhibitors and animal proteinase inhibitors of the Kazal type.  相似文献   

6.
Anti-proteinase activity has been found in seminal plasma of eight teleost fish species: brown trout, rainbow trout, brook trout, lake whitefish, bream, northern pike, Danube salmon and burbot. This activity correlated with seminal plasma protein and sperm concentrations. Using a mammalian (bovine) trypsin for detecting proteinase inhibitors it was found for the first time that there are species-specific electrophoretic profiles of anti-proteinase activity. One to three bands could be identified by this method. However, additional proteinase inhibitors could be identified by using fish (cod) trypsin. These inhibitors were detected in seminal plasma of salmonids and coregonids and have a slow migration rate. Fast-migrating proteinase inhibitors were present in rainbow, brown and brook trout, northern pike, whitefish and burbot. These inhibitors could be detected in brook and brown trout by using either trypsins. However, they were detected only with bovine trypsin in rainbow trout, northern pike, whitefish and burbot. These results suggest that multiple forms of serine proteinase inhibitors exist in seminal plasma of teleost fish and they differ in their affinity toward serine proteinases. Seminal plasma serine proteinase inhibitors of rainbow trout migrated during electrophoresis similarly to blood plasma proteinase inhibitors, and suggests that the two inhibitors may be similar or the same. Anti-proteinase specific activity was similar in blood and seminal plasma. Proteinase inhibitors of fish seminal plasma seem to be an important part of sperm physiology, possibly related to protection of spermatozoa. Staining for detection of serine proteinase inhibitors also allowed detection of presence of nonspecific esterase in seminal plasma of most species.  相似文献   

7.
J S Mills  M Needham    M G Parker 《The EMBO journal》1987,6(12):3711-3717
A full length cDNA clone encoding a mouse prostatic secretory glycoprotein (p12) whose synthesis is dependent upon testicular androgens has been cloned and characterized. The predicted amino acid sequence of p12 shares extensive homology with several members of the Kazal family of secretory protease inhibitors, in particular the pancreatic secretory trypsin inhibitors. In agreement with sequence data, prostatic secretory p12, purified from mouse ventral prostate secretion, exhibits anti-trypsin activity. Steady-state levels of protease inhibitor mRNA in ventral prostate are reduced from approximately 0.06% in normal mice to undetectable after androgen withdrawal but are inducible within 4 h by re-administration of testosterone. Androgen-dependent expression of the secretory protease inhibitor mRNA was also observed in coagulating gland and seminal vesicle. In seminal vesicle, a tissue of different embryonic origin to the prostate, the kinetics of secretory protease inhibitor mRNA loss after castration are not as rapid as in the ventral prostate and coagulating gland. Low-level androgen independent expression was also observed in the pancreas. There appears to be a single gene for this secretory protease inhibitor and yet expression is markedly stimulated by testosterone in the sex accessory tissues and unaffected by this hormone in the pancreas.  相似文献   

8.
Sword bean (Entada scandens) is a tree climber that belongs to Mimosoideae, a subfamily of Leguminosae. A potent Kunitz type trypsin inhibitor (ESTI) was purified to homogeneity from Entada scandens seeds by sequential ammonium sulfate precipitation, affinity chromatography on trypsin-Sepharose and DEAE-Sephacel ion-exchange chromatography. ESTI is a single polypeptide chain of 19,766 Da. Both native PAGE as well as isoelectric focusing showed a single inhibitor species with a pI of 7.43. MALDI-TOF analysis also confirmed the monomeric nature. The amino-terminal sequence of ESTI reveals significant homology to the Kunitz-type protease inhibitors of legume plants. ESTI is unique in that it contains a single disulfide bridge, and unlike other inhibitors from Mimosoideae species is a single chain polypeptide. ESTI inhibited bovine trypsin with a stoichiometry of 1:1 and the apparent K(i) was 4.9 x 10(-9) M. In vitro assay showed that ESTI inhibited the midgut proteinase of the fifth instar larvae of Rice moth (Corcyra cephalonica) with an IC(50) of 26.4+/-0.01 nM. ESTI exhibits a mixed type competitive inhibition at lower concentration and pure competitive at higher inhibitor concentrations. Phylogenetic analyses depicted a clear divergence of single disulfide containing inhibitors from other tree legume Kunitz inhibitors. The homology of ESTI to Kunitz inhibitors together with the absence of Bowman-Birk type inhibitors in sword bean further supports the theory that there exists an evolutionary relationship between the families of inhibitors found in Leguminosae.  相似文献   

9.
10.
The purification of the latent form of a rat pancreas trypsin-like protein was performed by ion-exchange and hydrophobic chromatographies. After partial activation, the affinity on immobilized soybean trypsin inhibitor allowed the isolation of an active and an inactive form. They had 30,000 and 32,000 molecular weight, respectively, as checked by polyacrylamide slab gel electrophoresis. Active enzyme (named TLP) was not glycosylated and had an isoelectric point of 4.4. The rate of hydrolysis of different substrates and the effects of various proteinase inhibitors indicated clearly that TLP differs from proteinases previously described and belongs to the trypsin family.  相似文献   

11.
A novel serine proteinase inhibitor, DgTI, was purified from Dioclea glabra seeds by acetone precipitation, and ion-exchange and reverse phase chromatography. The inhibitor belongs to the Bowman-Birk family, and its primary sequence, determined by Edman degradation and mass spectrometry, of 67 amino acids is: SSGPCCDRCRCTKSEPPQCQCQDVRLNSCHSACEACVCSHSMPGLCSCLDITHFCHEPCKSSGDDED++ +. Although two reactive sites were determined by susceptibility to trypsin (Lys(13) and His(40)), the inhibitory function was assigned only to the first site. The inhibitor forms a 1:1 complex with trypsin, and Ki is 0.5 x 10(-9) M. Elastase, chymotrypsin, kallikreins, factor Xa, thrombin, and plasmin were not inhibited. By its properties, DgTI is a Bowman-Birk inhibitor with structural and inhibitory properties between the class of Bowman-Birk type I (with a fully active second reactive site), and Bowman-Birk type II (devoid of second reactive site).  相似文献   

12.
A 20 kDa bifunctional inhibitor of the microbial proteinase, subtilisin, and the alpha-amylase from the larvae of the red flour beetle (Tribolium castaneum) was purified from bran of rice seeds by saline extraction, precipitation with ammonium sulphate, ion-exchange chromatography on DEAE-Cellulose and Toyopearl CM-650, and preparative HPLC on Vydac C18. The complete primary structure was determined by automatic degradation of the intact, reduced and S-alkylated protein, and by manual DABITC/PITC micro-sequencing of peptides obtained from the protein following separate enzymic digestions with trypsin, pepsin, chymotrypsin, elastase and the protease from S. aureus V8. The protein sequence, which contained 176 residues, showed strong homology with similar bifunctional inhibitors previously isolated from wheat and barley which are related to the Kunitz family of proteinase inhibitors from legume seeds.  相似文献   

13.
14.
Turkey seminal plasma contains a serine protease found to be distinct from the spermatozoal acrosin. However, the origin and biological roles of this enzyme are unknown. Our experimental objective was to identify the cellular source of this protease within the male reproductive tract. The enzyme was isolated from seminal plasma using benzamidine-Sepharose 6B chromatography. A synthetic substrate, Nalpha-benzoyl-DL-arginine p-nitroanilide, was used to detect fractions containing the enzyme. The affinity chromatography technique yielded a 150-fold increase in amidase activity. Analysis of the protease by SDS-PAGE revealed two protein bands with relative molecular masses of 37 000 and 61 000. Proteolytic activity was detected within the smaller band as evidenced by casein digestion. Further analysis of the purified protein revealed that the smaller protein band was glycosylated. To determine the cellular source of the protease, a panel of mouse monoclonal antibodies was then developed against the purified protease, and used in immunohistochemistry. Frozen tissue sections from the liver, testis, epididymal region, and deferent duct were fixed in 4% (w/v) paraformaldehyde, permeabilized with 0.2% (v/v) (octylphenoxy)polyethoxyethanol followed by routine immunohistochemistry procedures. Monoclonal antibodies did not bind to tissue sections from either the liver or testis, or to blood plasma proteins. Both the distal portion of the efferent duct and the deferent duct were immunoreactive. We concluded that the protease found in turkey seminal plasma is concentrated to the distal efferent duct and the deferent duct epithelial cells.  相似文献   

15.
Serine proteinase inhibitors from Boophilus microplus tick larvae (BmTIs) were purified by affinity chromatography on a trypsin-Sepharose column. BmTIs presented molecular weight between M(r) 6200 and 18,400 and inhibitory activity for trypsin, HuPK (human plasma kallikrein) and neutrophil elastase. Using ion exchange chromatography, BmTIs were separated in several protein pools named BmTI-A to BmTI-F and BmTI-1 to BmTI-7. All BmTI forms presented inhibitory activity for trypsin with apparent dissociation constants (K(i)) in the nM range. In this work, we describe the purification of BmTI-D, BmTI-2, and BmTI-3. These three inhibitors affected neutrophil elastase and HuPK with K(i) also in nM range. BmTI-D proved to be the best HuPK inhibitor, while BmTI-3 was more efficient for neutrophil elastase with dissociation constants (K(i)) of 12 and 0.5 nM, respectively. BmTI-D, BmTI-2, and BmTI-3 N-terminal amino acid sequences allowed us to include them into the BPTI-Kunitz type serine proteinase inhibitor family. BmTIs purified on trypsin-Sepharose were also used in a bovine immunization assay, resulting in antibody (anti-BmTIs) production.  相似文献   

16.
Seminal plasma of rainbow trout (Oncorhynchus mykiss, Salmonidae) contains an inhibitory system consisting of three fractions (I-III) characterized by different electrophoretic migration rates. Using a two-step isolation procedure we purified (20- and 43-fold to homogeneity) and characterized the two subforms of inhibitor I (Ia and Ib). On the basis of the homology alignment of the amino acid sequences, inhibitor I was classified to the family of cysteine proteinase inhibitors - fetuins. The molecular masses were determined to be 61,146.5Da and 63,096.0Da, and the isoelectric points were estimated to be 6.04 and 6.22 for inhibitor Ia and Ib. Both inhibitors were glycoproteins with a carbohydrate content about 13% for inhibitor Ia and 19% for inhibitor Ib. The equilibrium association constant of inhibitor Ib with cod trypsin was determined to be 7.1×10(8)M(-1). Except for the cod trypsin inhibition, the inhibitor Ib effectively inhibited papain belonging to the cysteine proteainases. Comparative studies of the distribution of inhibitor I and the previously described inhibitor II were performed. The presence of inhibitor I in the seminal plasma was a common feature of several Salmoniformes, which was contrary to inhibitor II detected in seminal plasma of other fish families. Inhibitors I and II showed different expression patterns in the testes and spermatic duct of the rainbow trout.  相似文献   

17.
An elicitor preparation obtained from Phytophthora parasitica var. nicotianae, a pathogen of tobacco, induced an accumulation of proteinase inhibitors and a stimulation of ethylene synthesis in a tobacco (Nicotiana tabacum) cell suspension culture. About 30 micrograms per milliliter of elicitor were necessary for maximal induction of proteinase inhibitor accumulation, and the response was detectable after 12 hours of incubation with elicitor. Accumulation of proteinase inhibitors required de novo protein synthesis, since cycloheximide completely inhibited its elicitation, and actinomycin D inhibited it partially. One of the inhibitors was purified by a procedure that included heating, (NH4)2SO4 precipitation, ion-exchange chromatography, and affinity chromatography. The purified inhibitor was shown to be a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of about 10,500. It inhibited trypsin but not chymotrypsin.  相似文献   

18.
The primary structure of the broad specificity proteinase inhibitor from dog submandibular glands was elucidated. The inhibitor consists of a single polypeptide chain of 117 amino acids which is folded into two domains (heads) connected by a peptide of three amino acid residues. Both domains I and II show a clear structural homology to each other as well as to the single-headed pancreatic secretory trypsin inhibitors (Kazal type). The trypsin reactive site (-Cys-Pro-Arg-Leu-His-Glx-Pro-Ile-Cys-) is located in domain I and the chymotrypsin reactive center (-Cys-Thr-Met-Asp-Tyr-Asx-Arg-Pro-Leu-Tyr-Cys-) in domain II, cf. the Figure. The inhibitor is thus double-headed with two independent reactive sites. Whereas head I is responsible for the inhibition of trypsin and plasmin, head II is responsible for the inhibition of chymotrypsin, subtilisin, elastase and probably also Aspergillus oryzae protease and pronase. Remarkably, the structural homology exists also to the single-headed acrosin-trypsin inhibitors from seminal plasma[12] and the Japanese quail inhibitor composed of three domains[13].  相似文献   

19.
Six cysteine proteinase inhibitors were isolated from human urine by affinity chromatography on insolubilized carboxymethylpapain followed by ion-exchange chromatography and immunosorption. Physicochemical and immunochemical measurements identified one as cystatin A, one as cystatin B, one as cystatin C, one as cystatin S, and one as low molecular weight kininogen. The sixth inhibitor displayed immunochemical cross-reactivity with salivary cystatin S but had a different pI (6.85 versus 4.68) and a different (blocked) N-terminal amino acid. This inhibitor was tentatively designated cystatin SU. The isolated inhibitors accounted for nearly all of the cysteine proteinase inhibitory activity of the urinary pool used as starting material. The enzyme inhibitory properties of the inhibitors were investigated by measuring inhibition and rate constants for their interactions with papain and human cathepsin B. Antisera raised against the inhibitors were used in immunochemical determinations of their concentrations in several biological fluids. The combined enzyme kinetic and concentration data showed that several of the inhibitors have the capacity to play physiologically important roles as cysteine proteinase inhibitors in many biological fluids. Cystatin C had the highest molar concentration of the inhibitors in seminal plasma, cerebrospinal fluid, and milk; cystatin S in saliva and tears; and kininogen in blood plasma, synovial fluid, and amniotic fluid.  相似文献   

20.
A number of trypsin inhibitors were isolated from wheat germs by affinity chromatography on immobilized trypsin, gel-filtration, and ion-exchange and reverse-phase chromatography. These inhibitors were classified into two groups, inhibitors I (Mr = 14,500) and II (Mr = 7,000), based on their molecular sizes. Inhibitors I and II inhibited bovine trypsin stoichiometorically at an enzyme to inhibitor ratio of 2 and 1, respectively. Sequence analysis of these inhibitors indicated a high degree of homology and that inhibitors I had a duplicated structure of inhibitors II. They are highly homologous to double-headed proteinase inhibitors (Bowman-Birk inhibitors) of Leguminosae plants. Inhibitors II are the first example of single-headed inhibitor corresponding to one inhibitory domain of the Bowman-Birk type double-headed inhibitors, which suggests that inhibitors II are relic of an ancestral single-headed inhibitor before the gene-duplication that led to the formation of present-day Bowman-Birk type inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号