首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pressure-induced unfolding of 23-kDa protein from spinach photosystem II has been systematically investigated at various experimental conditions. Thermodynamic equilibrium studies indicate that the protein is very sensitive to pressure. At 20 degrees C and pH 5.5, 23-kDa protein shows a reversible two-state unfolding transition under pressure with a midpoint near 160 MPa, which is much lower than most natural proteins studied to date. The free energy (DeltaG(u)) and volume change (DeltaV(u)) for the unfolding are 5.9 kcal/mol and -160 ml/mol, respectively. It was found that NaCl and sucrose significantly stabilize the protein from unfolding and the stabilization is associated not only with an increase in DeltaG(u) but also with a decrease in DeltaV(u). The pressure-jump studies of 23-kDa protein reveal a negative activation volume for unfolding (-66.2 ml/mol) and a positive activation volume for refolding (84.1 ml/mol), indicating that, in terms of system volume, the protein transition state lies between the folded and unfolded states. Examination of the temperature effect on the unfolding kinetics indicates that the thermal expansibility of the transition state and the unfolded state of 23-kDa protein are closer to each other and they are larger than that of the native state. The diverse pressure-refolding pathways of 23-kDa protein in some conditions were revealed in pressure-jump kinetics.  相似文献   

2.
Cardiomyocyte hypertrophy is formed in response to pressure or volume overload, injury, or neurohormonal activation. The most important vascular hormone that contributes to the development of hypertrophy is angiotensin II (Ang II). Accumulating studies have suggested that reactive oxygen species (ROS) may play an important role in cardiac hypertrophy. Propofol is a general anesthetic that possesses antioxidant action. We therefore examined whether propofol inhibited Ang II-induced cardiomyocyte hypertrophy. Our results showed that both ROS formation and hypertrophic responses induced by Ang II in cardiomyocytes were partially blocked by propofol. Further studies showed that propofol inhibited the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and mitogen-activated protein kinase/ERK kinase 1/2 (MEK1/2) induced by Ang II via a decrease in ROS production. In addition, propofol also markedly attenuated Ang II-stimulated nuclear factor-kappaB (NF-kappaB) activation via a decrease in ROS production. In conclusion, propofol prevents cardiomyocyte hypertrophy by interfering with the generation of ROS and involves the inhibition of the MEK/ERK signaling transduction pathway and NF-kappaB activation.  相似文献   

3.
6,7-Dimethyl-8-ribityllumazine synthase (lumazine synthase) catalyses the penultimate step in the biosynthesis of riboflavin. In Bacillus subtilis, 60 lumazine synthase subunits form an icosahedral capsid enclosing a homotrimeric riboflavin synthase unit. The ribH gene specifying the lumazine synthase subunit can be expressed in high yield. All amino acid residues exposed at the surface of the active site cavity were modified by PCR assisted mutagenesis. Polar amino acid residues in direct contact with the enzyme substrates, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate, could be replaced with relative impunity with regard to the catalytic properties. Only the replacement of Arg127, which forms a salt bridge with the phosphate group of 3,4-dihydroxy-2-butanone 4-phosphate, reduced the catalytic rate by more than one order of magnitude. Replacement of His88, which is believed to assist in proton transfer reactions, reduced the catalytic activity by about one order of magnitude. Surprisingly, the activation enthalpy deltaH of the lumazine synthase reaction exceeds that of the uncatalysed reaction. On the other hand, the free energy of activation deltaG of the uncatalysed reaction is characterised by a large entropic term (TdeltaS) of -37.8 kJmol(-1), whereas the entropy of activation (TdeltaS) of the enzyme-catalysed reaction is -6.7 kJmol(-1). This suggests that the rate enhancement by the enzyme is predominantly achieved by establishing a favourable topological relation of the two substrates, whereas acid/base catalysis may play a secondary role.  相似文献   

4.
The two osteoclastogenesis pathways, receptor activator nuclear factor (NF)-kappaB ligand (RANKL)-mediated and fusion regulatory protein-1 (FRP-1)-mediated osteoclastogenesis, have recently been reported. There were significant differences in differentiation and activation mechanisms between the two pathways. When monocytes were cultured with FRP-1 without adding M-CSF, essential for the RANKL system, TRAP-positive polykaryocyte formation occurred. FRP-1-mediated osteoclasts formed larger pits on mineralized calcium phosphate plates than RANKL+M-CSF-mediated osteoclasts did. Lacunae on dentin surfaces induced by FRP-1-mediated osteoclasts were inclined to be single and isolated. However, osteoclasts induced by RANKL+M-CSF made many connected pits on dentin surfaces as if they crawled on there. Interestingly, FRP-1 osteoclastogenesis was enhanced by M-CSF/IL-1alpha, while chemotactic behavior to the dentin slices was not effected. There were differences in pH and concentration of HCO3- at culture endpoint and in adherent feature to dentin surfaces. Our findings indicate there are two types of osteoclasts with distinct properties.  相似文献   

5.
6.
Vanhoutte N  Hermans E 《FEBS letters》2008,582(13):1847-1852
A tetracycline-dependent inducible system was used to achieve controlled expression of the glutamate transporter 1 (GLT-1) in C6 glioma cells. Non-induced cells show modest glutamate uptake and, in the presence of L-cystine, these cells tend to release substantial amounts of glutamate. Overnight exposure to doxycycline increased D-[3H]-aspartate uptake, reaching similar capacity as observed in cultured astrocytes. Efficient clearance of exogenously applied glutamate was evidenced in these cells, even in the presence of l-cystine. The addition of glutamate (100 microM) to the medium of non-induced cells significantly increased their proliferation rate, an effect that was blocked when the expression of GLT-1 was induced. This suggests that impaired glutamate uptake capacity in glioma cells indirectly contributes to their proliferation.  相似文献   

7.
Activation of the O(2)(-) generating NADPH oxidase of phagocytes results from the assembly of the membrane-bound flavocytochrome b(558) with cytosolic proteins, p67(phox), p47(phox), and Rac. However, it has been recently reported that the arachidonic acid- and calcium-binding heterodimer S100A8/A9, abundant in neutrophil cytosol, influences the activation process. In a semi-recombinant system comprising neutrophil membranes, recombinant proteins, p67(phox), p47(phox), GTPgamma S-loaded Rac2, and arachidonic acid (AA), both the rate and the extent of the oxidase activation were increased by S100A8/A9, provided it was preloaded with AA. Binding of [(14)C]AA to S100A8/A9 was potentiated by recombinant cytosolic phox proteins and GTPgammaS, suggesting the formation of a complex, comprising oxidase activating proteins and S100A8/A9, with a greater affinity for AA. The rate constant of oxidase activation was not increased by AA-loaded S100A8/A9, whereas the maximal oxidase activity elicited was twice as high. AA-loaded S100A8/A9 increases oxidase activation probably by decreasing the deactivation rate.  相似文献   

8.
Angiotensin II (Ang II) plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin''s metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O2 .−-dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt). Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser473 and Thr308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3α phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(P)Hoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr156/139, close to their active site Asp166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein nitration as a major mechanism in the regulation of Ang II and insulin signaling pathways and more particularly as a key regulator of protein kinase activity.  相似文献   

9.
Angiotensin II (Ang II) evokes a variety of hypertrophic responses such as activation of protein kinases, reprogramming of gene expressions and an increase in protein synthesis in cardiac myocytes. In this study, we examined the role of Rho family small GTP binding proteins (G proteins) in Ang II-induced cardiac hypertrophy. Ang II strongly activated extracellular signal-regulated protein kinases (ERKs) in cardiac myocytes of neonatal rats. Although Ang II-induced activation of ERKs was completely suppressed by an Ang II type 1 receptor antagonist, CV-11974, this activation was not inhibited by the pretreatment with C3 exoenzyme, which abrogates Rho functions. Overexpression of Rho GDP dissociation inhibitor (Rho-GDI), dominant negative mutants of Rac1 (D.N.Rac1), or D.N.Cdc42 had no effects on Ang II-induced activation of transfected ERK2. The promoter activity of skeletal a-actin and c-fos genes was increased by Ang II, and the increase was partly inhibited by overexpression of Rho-GDI and the pretreatment with C3 exoenzyme. Ang II increased phenylalanine incorporation into cardiac myocytes by approximately 1.4 fold as compared with control, and this increase was also significantly suppressed by the pretreatment with C3 exoenzyme. These results suggest that the Rho family small G proteins play important roles in Ang II-induced hypertrophic responses in cardiac myocytes.  相似文献   

10.
Ohnishi T  Salerno JC 《FEBS letters》2005,579(21):4555-4561
A novel mechanism for proton/electron transfer is proposed for NADH-quinone oxidoreductase (complex I) based on the following findings: (1) EPR signals of the protein-bound fast-relaxing semiquinone anion radicals (abbreviated as Q(Nf)-) are observable only in the presence of proton-transmembrane electrochemical potential; (2) Iron-sulfur cluster N2 and Q(Nf)- are directly spin-coupled; and (3) The projection of the interspin vector extends only 5A along the membrane normal [Yano, T., Dunham, W.R. and Ohnishi, T. (2005) Biochemistry, 44, 1744-1754]. We propose that the proton pump is operated by redox-driven conformational changes of the quinone binding protein. In the input state, semiquinone is reduced to quinol, acquiring two protons from the N (matrix) side of the mitochondrial inner membrane and an electron from the low potential (NADH) side of the respiratory chain. A conformational change brings the protons into position for release at the P (inter-membrane space) side of the membrane via a proton-well. Concomitantly, an electron is donated to the quinone pool at the high potential side of the coupling site. The system then returns to the original state to repeat the cycle. This hypothesis provides a useful frame work for further investigation of the mechanism of proton translocation in complex I.  相似文献   

11.
Eukaryotic cells rely on a surveillance mechanism, the "Spindle Assembly Checkpoint"SACM in order to ensure accurate chromosome segregation by preventing anaphase initiation until all chromosomes are correctly attached to the mitotic spindle. In different organisms, a mitotic checkpoint complex (MCC) composed of Mad2, Bub3, BubR1/Mad3, and Cdc20 inhibits the anaphase promoting complex (APC/C) to initiate promotion into anaphase. The mechanism of MCC formation and its regulation by the kinetochore are unclear. Here, we constructed dynamical models of MCC formation involving different kinetochore control mechanisms including amplification as well as inhibition effects, and analysed their quantitative properties. In particular, in this system, fast and stable metaphase to anaphase transition can only be triggered when the kinetochore controls the Bub3:BubR1-related reactions; signal amplification and inhibition play a subordinate role. Furthermore, when introducing experimentally determined parameter values into the models analysed here, we found that effective MCC formation is not combined with complete Cdc20 sequestering. Instead, the MCC might bind and completely block the APC/C. The SACM might function by an MCC:APC/C complex rearrangement.  相似文献   

12.
To define the mechanism of arsenite-induced tumor promotion, we examined the role of reactive oxygen species (ROS) in the signaling pathways of cells exposed to arsenite. Arsenite treatment resulted in the persistent activation of p70(s6k) and extracellular signal-regulated kinase 1/2 (ERK1/2) which was accompanied by an increase in intracellular ROS production. The predominant produced appeared to be H(2)O(2), because the arsenite-induced increase in dichlorofluorescein (DCF) fluorescence was completely abolished by pretreatment with catalase but not with heat-inactivated catalase. Elimination of H(2)O(2) by catalase or N-acetyl-L-cysteine inhibited the arsenite-induced activation of p70(s6k) and ERK1/2, indicating the possible role of H(2)O(2) in the arsenite activation of the p70(s6k) and the ERK1/2 signaling pathways. A specific inhibitor of p70(s6k), rapamycin, and calcium chelators significantly blocked the activation of p70(s6k) induced by arsenite. While the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 completely abrogated arsenite activation of p70(s6k), ERK1/2 activation by arsenite was not affected by these inhibitors, indicating that H(2)O(2) might act as an upstream molecule of PI3K as well as ERK1/2. Consistent with these results, none of the inhibitors impaired H(2)O(2) production by arsenite. DNA binding activity of AP-1, downstream of ERK1/2, was also inhibited by catalase, N-acetyl-L-cysteine, and the MEK inhibitor PD98059, which significantly blocked arsenite activation of ERK1/2. Taken together, these studies provide insight into mechanisms of arsenite-induced tumor promotion and suggest that H(2)O(2) plays a critical role in tumor promotion by arsenite through activation of the ERK1/2 and p70(s6k) signaling pathways.  相似文献   

13.
In this study, we showed that plasminogen (Plg) and plasmin (Pla) bind to lysine-binding sites on cell surface and trigger a signaling pathway that activates the mitogen-activated protein kinase (MAPK) MEK and ERK1/2, which in turn leads to the expression of the primary response genes c-fos and early growth response gene egr-1. Our data show that the Plg/Pla-stimulated steady-state mRNA levels of both genes reached a maximum by 30 min and then returned to basal levels by 1h. The gene induction was sensitive to both pharmacological and genetic inhibition of MEK. Leupeptin, a serine protease inhibitor, suppressed Pla but not Plg-induced c-fos and egr-1 expression, emphasizing the role played by the serine protease activity associated with Pla. Pre-incubation with cholera toxin completely blocked the Plg/Pla-induced gene expression, suggesting that another signaling pathway, which recruits G protein-coupled receptors, may also be involved. Furthermore, Plg/Pla also stimulated AP-1 and EGR-1 DNA-binding activities, which were abrogated by pharmacological inhibition of MEK. Altogether, these results suggest that Plg/Pla stimulates c-fos and egr-1 expression via activation of the MEK/ERK pathway.  相似文献   

14.
To confirm whether or not the sulfo group of estradiol 17-sulfate (ES) is removed during in vivo metabolism in rats, the doubly labeled conjugate [6,7-3H, 35S] ES was injected into rats, and its biliary and urinary metabolites were determined by reverse isotope dilution method (RIDM). In male rats, the major radioactivity was detected in biliary disulfate fraction, which was composed of mainly ES and its two minor metabolites, 2-hydroxyestradiol 17-sulfate (2-OH-ES) and 2-methoxyestradiol 17-sulfate (2-MeO-ES). In female rats, in contrast, the radioactivity was dispersed into three fractions:biliary monosulfate, biliary disulfate, and urinary monosulfate fractions (Frs.) In both monosulfate Frs., 7beta-hydroxyestradiol 17-sulfate was detected as the major metabolite followed by 6alpha-, 6beta-, and 15beta-hydroxyestradiol 17-sulfates. Like male rats, 2-OH-ES and 2-Meo-ES as the minor products were detected in biliary disulfate fraction. The isotope ratios of ES and its metabolites in both sexes were essentially the same as that of the dose except that of 6alpha-hydroxylated metabolite, which may be derived from the loss of the tritium labeled at C6. These results confirm the occurrence of the direct metabolism of ES in rats.  相似文献   

15.
We recently found that the concentration of HCO3- in guinea-pig saliva is very similar to that of human saliva; however, the entity that regulates HCO3- transport has not yet been fully characterized. In order to investigate the mechanism of HCO3- transport, we identified, cloned, and characterized a sodium bicarbonate (Na(+)/HCO3- cotransporter found in guinea-pig parotid glands (gpNBC1). The gpNBC1 gene encodes a 1079-amino acid protein that has 95% and 96% homology with human and mouse parotid NBC1, respectively. Oocytes expressing gpNBC1 were exposed to HCO3- or Na(+)-free solutions, which resulted in a marked change in membrane potentials (V(m)), suggesting that gpNBC1 is electrogenic. Likewise, a gpNBC1-mediated pH recovery was observed in gpNBC1 transfected human hepatoma cells; however, in the presence of 4, 4-diisothiocyanostilbene-2,2-disulfonic acid, a specific NBC1 inhibitor, such changes in V(m) and pH(i) were not observed. Together, the data show that the cloned guinea-pig gene is a functional, as well as sequence homologue of human NBC1.  相似文献   

16.
This study shows the presence of all three nitric oxide synthases (NOSs) and NOS activity in H9c2 cells cultured under non-stimulated conditions. By using the 4,5 diaminofluoresceindiacetate (DAF-2DA) fluorimetric nitric oxide (NO(*)) detection system we observed NO(*) production in H9c2 cells. As revealed by confocal microscopy, NO(*) fluorescence colocalizes in mitochondria labeled with Mito-Tracker Red CM-H(2)Xros. Upon stimulation with acetylcholine (Ach), which increased NOS activity by 75%, the colocalization coefficient C(green) value, calculated as Pearson's correlation, increased from 0.07 to 0.10, demonstrating an augmented presence of NO(*) in mitochondria. Conversely, the presence of NO(*) in mitochondria decreased following cells pretreatment with l-MonoMethylArginine (L-NMMA), a competitive inhibitor of NOS activity, as indicated by the reduction of the C(green) value to 0.02. This work confirms that the presence of NO(*) in mitochondria can be modulated in response to different fluxes of NO(*).  相似文献   

17.
It is well documented that 17-estradiol (E2) exerts a cardiovascular protective effect. A possible role of E2 in the regulation of endothelin-1 (ET-1) production has been reported. However, the complex mechanisms by which E2 inhibits ET-1 expression are not completely understood. The aims of this study were to examine whether E2 may alter angiotensin II (Ang II)-induced cell proliferation and ET-1 gene expression and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with E2, then stimulated with Ang II, and [3H]thymidine incorporation and ET-1 gene expression were examined. The effect of E2 on Ang-II-induced extracellular signal-regulated kinase (ERK) phosphorylation was tested to elucidate the intracellular mechanism of E2 in proliferation and ET-1 gene expression. Ang II increased DNA synthesis which was inhibited with E2 (1–100 nM). E2, but not 17-estradiol, inhibited the Ang-II-induced ET-1 gene expression as revealed by Northern blotting and promoter activity assay. This effect was prevented by coincubation with the estrogen receptor antagonist ICl 182,780 (1 µM). E2 also inhibited Ang-II-increased intracellular reactive oxygen species (ROS) as measured by a redox-sensitive fluorescent dye, 2,7-dichlorofluorescin diacetate, and ERK phosphorylation. Furthermore, E2 and antioxidants, such as N-acetyl cysteine and diphenylene iodonium, decreased Ang-II-induced cell proliferation, ET-1 promoter activity, ET-1 mRNA, ERK phosphorylation, and activator protein-1-mediated reporter activity. In summary, our results suggest that E2 inhibits Ang-II-induced cell proliferation and ET-1 gene expression, partially by interfering with the ERK pathway via attenuation of ROS generation. Thus, this study provides important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of estrogen on the cardiovascular system.  相似文献   

18.
This study showed that four factors which stimulate transepithelial fluid secretion and inorganic ion transport across the main segment of the Malpighian tubules of Drosophila melanogaster also stimulate transepithelial secretion of the prototypical organic cation tetraethylammonium (TEA). TEA fluxes across the Malpighian tubules and gut were measured using a TEA-selective self-referencing (TEA-SeR) microelectrode. TEA flux across isolated Malpighian tubules was also measured using a TEA-selective microelectrode positioned in droplets of fluid secreted by tubules set up in a modified Ramsay assay. TEA flux was stimulated by the intracellular second messengers cAMP and cGMP, which increase the lumen-positive transepithelial potential (TEP), and also by tyramine and leucokinin-I (LK-I), which decrease TEP. The largest increase was measured in response to 1 micromol l-1 LK-I which increased transepithelial TEA flux by 72%. TEA flux in the lower tubule was stimulated slightly (13%) by 1 micromol l-1 tyramine but not by any of the other factors. TEA flux across the midgut was unaffected by cAMP, cGMP or tyramine. This is the first study to demonstrate the effects of insect diuretic factors and second messengers on excretion of organic cations.  相似文献   

19.
Xyloglucans from seeds of Copaifera langsdorffii (XGC), Hymenaea courbaril (XGJ) and Mucuna sloanei (XGM) were obtained from milled and defatted cotyledons by aqueous extraction at 25 degrees C. The resulting fractions contained Glc, Xyl and Gal in molar ratios of 2.5: 1.5: 1.0 (XGC), 3.8: 2.6: 1.0 (XGJ) and 2.5: 1.6: 1.0 (XGM). HPSEC-MALLS/RI analysis showed that each polysaccharide fraction was homogeneous; M(w) values were 1.6 x 10(5), 2.0 x 10(5) and 1.5 x 10(5)g/mol, respectively. The effect of the xyloglucans on the production of O(2)*(-) and NO* and on the recruitment of macrophages to the mouse peritoneum was evaluated. All polysaccharides promoted an increase in the number of peritoneal macrophages in a dose-dependent manner. The largest increase, of 576% in comparison to the control group, was elicited by XGJ at 200 mg/kg. The effect of XGC, XGJ and XGM on O(2)*(-) production, in the presence or absence of phorbol 12-myristate 13-acetate (PMA), was not statistically significant. For NO(.) production, the lowest concentration of XGC (10 microg/ml) gave rise to an increase of 262% when compared to the control group; the effect was dose-dependent, reaching 307% at 50 microg/ml. On the other hand, XGJ at a concentration of 50 microg/ml enhanced NO* production by 92%. XGM did not affect NO* production significantly. The results indicate that xyloglucans from C. langsdorffii, H. courbaril and M. sloanei have immunomodulatory activity.  相似文献   

20.
A series of novel copper(II) complexes, L2Cu with newly synthesized 3,5--salicylaldimine (or 5--salicylaldimine) ligands derived from 2,4-di-tert-butyl phenol (or 4-tert-butyl phenol) and alkyl (aryl) amines have been prepared and their spectroscopic (IR, UV-Vis, ESI-MS), X-ray, magnetic and redox properties have been investigated. The X-ray crystallography analysis shows that all complexes are monomeric and their copper(II) centers are surrounded by phenolate oxygens and imine nitrogen atoms. Therefore, the coordination sphere around the copper atoms is N2O2 as seen in galactose oxidase active site. In addition, the geometric configurations of all complexes are square planar or slightly distorted square planar. The crystal system for all complexes is monoclinic, except for which is orthorhombic. The temperature dependence of magnetic susceptibility of complexes confirms the mononuclear structure of complexes. Oxidation of the Cu(II) complexes yielded the corresponding Cu(II)-phenoxyl radical species during the cyclic voltammetry experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号