首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 671 毫秒
1.
运用压力室-容积技术(P-V技术)对西鄂尔多斯地区特有的濒危植物四合木(Tetraena mongolica Maxim.)和生长于同一生境的近缘种霸王(Zygophyllum xanthoxylon (Bunge) Maxim.)的7个水分关系参数饱和含水量时最大渗透势(Ψssat) 、初始质壁分离时的渗透势(Ψstlp) 、初始质壁分离时渗透水相对含量(ROWCtlp) 、初始质壁分离时的相对含水量(RWCtlp) 、质外体水的相对含量(AWC) 、束缚水与自由水的比值(Va / V0),以及细胞最大弹性模量(εmax)进行了测定,同时利用Li-6400光合作用测定系统测定了二者叶片气体交换参数的日变化,从生理生态学角度探讨了二者生存力、适应力的差异。结果表明:1)四合木的εmax、ROWCtlp值和RWCtlp值均显著低于霸王,而ΨssatΨstlp值、AWC和Va / V0高于霸王。二者保持膨压的能力和方式不同,四合木表现为较小的细胞体积和较强的持水能力,主要以高的组织弹性来保持膨压,而霸王主要以增加细胞质浓度的渗透调节来维持膨压,弹性调节较弱。且四合木保持最大膨压的能力和维持最低膨压的极限渗透势低于霸王,耐旱性弱于霸王。2)自然条件下,四合木和霸王叶片的光合速率(Pn)、蒸腾速率(Tr)日进程均呈"双峰"曲线,主峰出现在11:00时,次峰出现在15:00时左右,光合作用的午间降低是由气孔导度(Gs)降低造成的。二者相比,四合木光合速率和水分利用效率(WUE)低于霸王,光合能力和对干旱环境适应能力弱于霸王。研究表明四合木在生理生态学方面的生存力、适应力弱于霸王。  相似文献   

2.
强旱生小灌木绵刺劈裂生长过程中的水分特征   总被引:3,自引:0,他引:3       下载免费PDF全文
绵刺(Potaninia mongolica)是西鄂尔多斯-东阿拉善地区特有的单种属残遗植物。选取内蒙古磴口县境内具有绵刺群落的草原化荒漠区为研究样区,于2002~2003年每年8月1~5日采集未劈裂、正在劈裂和已劈裂植株,运用PV技术对不同劈裂生长状态绵刺的多种水分关系参数(${φ_{s}}^{sat}$、${φ_{s}}^{tlp}$、ROWCtlpRWCtlpΔφεmax等)进行了测定,从绵刺保持膨压的能力和途径两方面进行了深入探讨;同时结合同一项目研究中绵刺劈裂生长过程中抗氧化酶系统和内源激素方面的研究成果,综合分析并探讨了绵刺劈裂生长的发生机理及其环境适应性。结果表明:1)未劈裂绵刺主要通过增加细胞内溶质(如脯氨酸),减少细胞内的水分丧失来进行渗透调节,从而在干旱胁迫下能够维持正常的膨压。2)已劈裂绵刺通过渗透调节和高的组织弹性两条途径来共同保持膨压,以抵抗不良的生存环境;同时对环境水分胁迫具有较高的敏感性。3)3种状态绵刺保持膨压的能力由强到弱依次为:未劈裂绵刺、正在劈裂绵刺、已劈裂绵刺。4)劈裂的发生导致绵刺保持膨压能力的降低,同时耐旱方式和途径发生了变化。  相似文献   

3.
4种沙生灌木幼苗PV曲线水分参数对干旱胁迫的响应   总被引:8,自引:2,他引:6  
以柠条、沙木蓼、杨柴和花棒4种沙生灌木幼苗为材料,采用盆栽法在适宜水分、中度干旱和重度干旱(田间持水量的75%、50%和35%)3种土壤水分条件下,应用PV技术测定了它们在膨压为0时的渗透势(ψstlp)、相对水含量(RWCtlp)和相对渗透水含量(ROWCtlp),以及饱和含水时的渗透势(ψssat)、束缚水含量(Va)、膨压随叶水势下降而降低的速率b值和组织细胞总体弹性模量(ε′)等水分参数,并用隶属函数值法对4种苗木在干旱下保持膨压的能力进行了综合评价.结果显示:与适宜水分条件下相比较,除花棒幼苗在中度及重度干旱下ψssat值、柠条苗在中度干旱下ψssat和ψstlp差值和在中度及重度干旱下Va值、沙木蓼苗在中度干旱下ε′和RWCtlp值均变化很小以外,4种苗木其它水分参数在不同程度干旱胁迫下均有较明显的变化,且其变化幅度随干旱胁迫的加剧而增加,从而使苗木保持膨压及吸水保水的能力较适宜水分下明显增强;苗木保持膨压能力的综合评价结果为:中度干旱下柠条>花棒>杨柴>沙木蓼,重度干旱下柠条>花棒>沙木蓼>杨柴.研究表明,柠条幼苗对干旱胁迫具有极强的渗透调节适应性.  相似文献   

4.
西鄂尔多斯高原北缘四合木群落优势灌木种群生态位研究   总被引:5,自引:0,他引:5  
利用Shannon-Wiener生态位宽度、生态位相似比例及Pianka生态位重叠值等指标对西鄂尔多斯高原北缘四合木(Tetraena mongolica Maxim.)群落内的11种优势灌木种群进行研究。结果表明,群落中主要种类的生态位宽度均较高,其中绵刺(Potaninia mongolica Maxim.)和四合木的生态位宽度分别为1.702 6和1.532 8;各种类的生态位相似比例均较小;绵刺与其他种类的生态位重叠值较高,四合木和其他种类的生态位重叠值较低。表明四合木群落内许多耐干旱灌木逐渐占据较宽的生态位,群落层次结构比较单一,四合木与其他种类间的相互作用强度不高,整个群落抵御外来干扰的能力较弱,四合木种群有衰退的趋势。  相似文献   

5.
四合木(Tetraena mongolica)水分参数季节变化及生境间差异   总被引:5,自引:2,他引:3  
石松利  王迎春  周健华 《生态学报》2008,28(12):6079-6089
运用PV技术对5个不同生境四合木水分参数(ψs^sal、ψs^tlp、ROWC^tlp、RWC^tlp如、AWC、Va/Vo和ε^max)的季节动态(5、7、9月份)及生境间差异性进行研究。结果表明:(1)四合木水分参数ψs^sal、ψs^tlp值较低,AWC、Va/Vo值较高,体现荒漠灌木四合木较强的干旱适应性特点。(2)四合木主要水分参数ψs^sal、ψs^tlp值及ε^max表现为5月份〉7月份〉9月份,AWC、Va,Vo表现为5月份〈7月份〈9月份,四合木耐旱性随5月份、7月份、9月份递增,这种季节变化规律与植物生长发育的节律相吻合,即与物候的进程一致。(3)对5个生境四合木(低山、台地、丘陵、高平原、倾斜平原)耐旱性排序,得出倾斜平原、高平原〉丘陵〉台地〉低山,将3个月份5个不同生境四合木水分参数进行聚类。结果低山、台地、丘陵四合木为一类,高平原、倾斜平原四合木为一类。方差分析表明:3个月份ψs^sal值、ψs^tlp值和AWC值均表现为高平原、倾斜平原四合木显著低于低山、台地、丘陵四合木。不同生境四合木的渗透调节机制不同,倾斜平原和高平原的四合木其体内通过增加细胞质浓度进行渗透调节能力较强(较低的ψs^tlp值和ψs^sal);而生境为低山、台地和丘陵四合木抗脱水能力较强(较大的AWC值)。  相似文献   

6.
木本猪毛菜(Salsola arbucula)、刺旋花(Convolvulos tragacanthoides)和刺木蓼(Atraphaxis spinosa)为乌鲁木齐周边植被组成的重要种,在维持荒漠生态系统的稳定中发挥着重要作用,是植被恢复过程中潜在的候选植物种。该文以盆栽控水法,分析比较了3种野生灌木在不同干旱胁迫下的生理生长特征的差异。结果表明,干旱胁迫下3种灌木均表现出良好的耐旱能力。在生长方面,刺旋花生长受到的影响最小,重度胁迫下其生物量与适宜水分处理相比仅减少9.7%,根系极发达,根冠比大。木本猪毛菜受抑制严重,重度干旱时株高和基茎增量为适宜水分处理的17.85%和21.63%。生理方面,刺旋花叶片叶绿素含量最高,膜系统受破坏较小,渗透调节可以通过可溶性糖的积累来实现。木本猪毛菜膜系统受破坏较小,脯氨酸的积累对渗透调节起重要作用。刺木蓼的脯氨酸和可溶性糖两种渗透调节物质均起重要作用。总之,木本猪毛菜和刺木蓼在轻度干旱下表现良好,刺旋花则能够在重度干旱下保持植物体正常的生理代谢功能,表现出对干旱环境较强的适应能力。  相似文献   

7.
采用压力室法在土壤水势为-0.021、-0.121、-0.698、-0.968 MPa 4种情况下对大田种植的1年生Larrea tridentata的小枝水势进行测定,并绘制PV曲线,通过PV曲线求解各水分参数,用以判定土壤水分胁迫对L.tridentata生理特性的影响。研究结果表明:供水良好的情况下,L.tridentata水势日变化呈双峰曲线,随着土壤水分含量的减少,峰值逐渐变得不明显。在土壤水分胁迫条件下,L.tridentata有一定的渗透调节和保持膨压的能力,它一方面通过细胞壁弹性和拥有较高的束缚水含量来保持膨压,另一方面原生质具有较强的忍耐脱水的能力。随着土壤干旱胁迫的逐渐加重,其耐脱水能力提高,保持膨压的能力逐渐减弱。通过对其在不同土壤水分胁迫条件下渗透调节和维持膨压能力的综合评价,得出其在4种土壤水分状况下的综合抗旱指数分别为0.25、0.17、0.933、0.657,说明随着土壤水分含量的逐渐减少,L.tridentata能逐渐提高自身抵御干旱的能力以适应干旱;通过抗旱模型的判定得出L.tridentata属于高水势延迟脱水型耐旱树种。  相似文献   

8.
玉米叶片生长部位渗透调节和生长的生物物理参数变化   总被引:6,自引:0,他引:6  
玉米叶片生长部位随着水分胁迫加剧ψ_w降低、LER减慢。LER从最大到零,快速干旱处理的ψw从-0.55降至-0.85 MPa;缓慢干旱处理ψ_w从-0.88降至-1.13 MPa。在任何一种LER下,缓慢干旱处理的ψ_s比快速干旱处理更低,生长停止时,前者为-1.57 MPa,而后者为-1.30MPa。缓慢干旱叶片尽管在更低ψ_w下,仍能维持一定膨压,保持一定的生长速率。经历长时间水分胁迫会改变细胞延伸生长的生物物理参数,增大临界膨压(0.08~0.09 MPa)。这是水分胁迫植株,在一定ψ_p下生长速率减慢的原因。  相似文献   

9.
柠条锦鸡儿(Caragana korshinskii)、白皮锦鸡儿(C.leucophloea)、刺叶锦鸡儿(C.acanthophylla)和长枝木蓼(Atraphaxis virgata)是乌鲁木齐周边植被组成中的重要植物种,在植被恢复中具有潜在价值。研究通过人工控制水分比较这4种灌木对干旱胁迫的生理响应,结果表明:叶片的组织含水量和叶绿素含量随着干旱胁迫的加剧而降低;脯氨酸在干旱胁迫下的积累程度较可溶性糖大;除刺叶锦鸡儿外其它植物幼苗的丙二醛在干旱胁迫下均无明显的积累(P>0.05)。4种灌木在干旱胁迫下通过渗透调节、保持膜系统稳定等途径维持正常的生理活动,对干旱具有一定的适应能力。4种灌木抗旱能力的排序为白皮锦鸡儿>柠条锦鸡儿>长枝木蓼>刺叶锦鸡儿。  相似文献   

10.
美国海滨桤木和薄叶桤木水分生理特性的比较   总被引:1,自引:0,他引:1       下载免费PDF全文
采取盆栽、人工控水的方式, 研究并比较了美国本土海滨桤木(Alnus maritima)和薄叶桤木(A. incana)的气孔导度(Gs)、叶片水势(ψleaf)以及渗透调节能力对土壤水分条件的响应, 以探讨引起两种桤木生态分布差异巨大的生理生态原因。结果表明: 1)正常水分条件下, 海滨桤木的Gs低于薄叶桤木, 其与大气温度、相对湿度和水蒸气亏缺等气象因子的相关性低于薄叶桤木; 干旱胁迫下, 海滨桤木的Gs对其自身ψleaf下降信号的敏感度低于薄叶桤木; 复水后, 其Gs恢复更为缓慢。2)正常水分条件下, 海滨桤木的ψleaf高于薄叶桤木, 且引起气孔关闭的ψleaf临界值较高; 干旱胁迫下, 海滨桤木的ψleaf下降幅度高于薄叶桤木。3)正常水分条件下, 海滨桤木和薄叶桤木的渗透调节能力无显著差异; 干旱胁迫下, 尽管两种桤木均表现出饱和状态渗透势(ψssat)下降、膨压与水势关系的最大变化率降低、初始失膨点渗透势(ψstlp)增加、细胞渗透调节能力范围(ψssat-ψstlp, Dψs)减小的趋势, 但与薄叶桤木相比, 海滨桤木的ψstlp较高, Dψs较小。从以上生理生态指标可以看出, 较高的叶片水势、较低的气孔调节能力、干旱下较低的渗透调节能力是造成海滨桤木分布范围狭小的重要原因。  相似文献   

11.
荒漠植物蒙古扁桃水分生理特征   总被引:3,自引:0,他引:3       下载免费PDF全文
蒙古扁桃(Prunus mongolica)是荒漠区和荒漠草原的水土保持植物和景观植物,是蒙古高原古老残遗植物,对其深入研究对于了解蒙古高原植被演替以及对当地生态环境的稳定和恢复有着重要意义。该实验采用PV技术和自然脱水法探讨了蒙古扁桃的水分生理特性。结果表明:在自然状态下,蒙古扁桃幼苗叶片的相对含水量为69%,饱和含水量为117%,临界饱和亏为48%,水势为-0.85 MPa。经 5% PEG-Hoagland (-0.46 MPa)干旱胁迫处理3 d后,其相对含水量、临界含水量和水势分别下降到48%、39%和 -1.97 MPa,而饱和含水量和束缚水与自由水比值分别增加到187%和11.94。对失水率分析的结果表明:在正常水分状态下,蒙古扁桃幼苗经102 h自然脱水后失水达到平衡,而经过干旱胁迫处理3 d后,其失水率曲线斜率变小,失水过程明显减缓,失水最终达到平衡的时间延长到152 h,其保水能力显著提高。将旱生植物蒙古扁桃的失水率曲线与中旱生植物长柄扁桃(P. pedunculata)的失水率曲线相比较发现,蒙古扁桃的耐脱水能力明显强于中旱生植物长柄扁桃。PV曲线(Pressure-volume curve)分析结果表明: 蒙古扁桃饱和含水量渗透势(Ψπ100)和零膨压渗透势 (Ψπ0)很低,分别为-2.49 MPa和-3.11 MPa,而Ψπ100Ψπ0差值较大(0.62 MPa),表明其维持膨压的能力很强。其细胞壁弹性模量值低(4.18 MPa)进一步表明,蒙古扁桃具有很强的膨压调节能力。蒙古扁桃幼苗失去膨压时的渗透含水量(ROWCtlp)为80%,这是其细胞壁特性所决定的渗透调节能力的基础。蒙古扁桃质外体含水量(AWC, %)较高(79%),因而具有较高的束缚水与自由水比值(7.76),这是其耐脱水性的生理基础。总之,蒙古扁桃叶水势、渗透势低有利于其根部对深层土壤水分的吸收,而较高的束缚水与自由水比值及较低的细胞壁弹性模量是其耐脱水的生理基础。  相似文献   

12.
To determine how tissue water relations vary and contribute to turgor maintenance in species from contrasting ecological zones, seedlings of jack pine ( Pinus banksiana Lamb.), black spruce ( Picea mariana [Mill] B.S.P.) and flooded gum ( Eucalyptus grandis W. Hill ex Maiden) were subjected to an 8 day drought stress by water withholding with and without prior mild water stress conditioning. Jack pine, a deep-rooted species from dry, sandy boreal sites, lost turgor at the lowest relative water content (75–65%) and water potential, and had lowest maximum bulk elastic modulus (Emax of 5.2–5.8 MPa). Although this suggests a high inherent dehydration tolerance, jack pine did not further adjust its elasticity when repeatedly stressed. Black spruce, a shallow-rooted species from predominantly moist sites in the boreal region, lost turgor at intermediate relative water content (86–76%) and water potential, but could adjust its elasticity to maintain turgor in repeatedly stressed tissues. Flooded gum, a deep-rooted species from moist, warm temperate-subtropical regions, had a low inherent drought tolerance since it lost turgor at higher relative water content (88–84%) and water potential, but was capable of some adjustment when the stress was repeated. Elastic adjustment (<3.7 MPa) was more important for turgor maintenance than osmotic adjustment (<0.13 MPa), which was statistically nonsignificant. Maximum bulk modulus of elasticity, but not osmotic potentials at full turgor, was significantly correlated with the relative water content and water potential at zero turgor in droughted seedlings. These results highlight the importance of tissue shrinkage for dehydration tolerance. Both the inherent capacity for turgor maintenance of a species under drought and its ability to adjust to repeated drought should be considered in genetic selections for drought tolerance.  相似文献   

13.
The possibility was considered that osmotic adjustment, the ability to accumulate solutes in response to water stress, may contribute to growth rate differences among closely-related genotypes of trees. Progeny variation in osmotic adjustment and turgor regulation was investigated by comparing changes in osmotic and pressure potentials, soluble carbohydrates, and amino acids in osmotically stressed seedlings in 4 full-sib progenies of black spruce [ Picea mariana (Mill.) B. S. P.] that differed in growth rate under drought. Osmotic stress was induced by a stepwise increase in the concentration of polyethylene glycol (PEG)-3350 from 10 (w/v) to 18 and 25%, which provided osmotic potentials in solution culture of -0.4, -1.0 and -2.0 MPa each for 3 days. All 4 progenies maintained a positive cell turgor even at 25% PEG, due to a significant decline in osmotic potential. Although total amino acids, principally proline, increased, ca 60% of the decrease in osmotic potential was attributable to soluble carbohydrates and glucose was the major osmoregulating solute. There was little progeny variation in any of measured parameters in unstressed seedlings. Compared to two slower-growing progenies, the two progenies capable of more vigorous growth under drought in the field accumulated more soluble carbohydrates (mainly glucose and fructose), developed lower osmotic potential and maintained higher turgor pressure when osmotically-stressed in solution culture. The ability to adjust osmotically and maintain turgor under drought stress could thus be a useful criterion for the early selection of faster-growing, drought-tolerant genotypes.  相似文献   

14.
Murphy R  Ortega J 《Plant physiology》1995,107(3):995-1005
A new in vivo method was used to determine an average volumetric elastic modulus ([epsilon]ave) for nongrowing cells in plant tissue. This method requires that both the relative transpiration rate, T, of the tissue and the average turgor pressure decay rate, (dP/dt)ave, of the cells are measured after the water source is removed from the plant tissue. Then [epsilon]ave is calculated from the equation [epsilon]ave = (-dP/dt)ave/T. This method was used to determine [epsilon]ave for cortical cells in stems of pea seedlings (Pisum sativum L.). The results demonstrate that [epsilon]ave increases from virtually zero at low P (approximately 0.01MPa) to approximately 10 MPa at high P (approximately 0.5 MPa). Analyses of the results indicate that the relationship between [epsilon]ave and P can be approximated by a linear function and more accurately approximated by a saturating exponential function: [epsilon]ave = [epsilon][infinity symbol][1 - exp {-k(P - Po)}], where Po is a plateau pressure (approximately 0.01 MPa), k is a rate constant (approximately 7 per MPa), and [epsilon][infinity symbol] (approximately 10 MPa) is the hypothetical maximum value of [epsilon]ave as P -> [infinity symbol]. Solutions for the turgor pressure decay (due to transpiration) as functions of time and symplasmic water mass (after the water source is removed) are derived.  相似文献   

15.
The water content-water potential relation in stressed and unstressed cassava ( Man-ihot species) was examined to ascertain (i) the magnitude of osmotic adjustment in response to water stress and (ii) the mechanisms of such adjustments.
Water stress resulted in a displacement of the water content-potential relation such that at any leaf water potential the water content was higher in the stressed plants. The osmotic potentials of turgid leaves (100% relative water content) were -0.97 and -1.00 MPa in the unstressed cultivars CMC 9 and MCOL 113 respectively. In the stressed plants, the values were-1.13 MPa (CMC 9) and-1.14 MPa (MCOL 113). The 0.14 to 0.16 MPa osmotic potential difference between the stressed and unstressed plants suggests that a stress-induced osmotic adjustment occurred in both cultivars. The biiSk volumetric elastic moduli at turgor pressures above 0.10 MPa were 9.84 MPa (CMC 9) and 13.58 MPa (MCOL 113) in the unstressed plants. Tbe higher values found in the stressed plants, 14.56 MPa in CMC 9 and 16.91 MPa in MCOL 113, suggest a stress-induced decrease in cell wall elasticity. Hence, the observed shift in the wafer content-potential relations in the cassava involved both an osmotic adjustment and a decrease in cell wall elasticity. Increasing the number of stress cycles per plant did not cause a further displacement of the water content-potential curves.  相似文献   

16.
Abstract This study reports on the effect of water deficit on the tissue water relations and leaf growth of six corn cultivars, growing in glasshouse conditions, in order to understand growth responses to drought of tropical corn. A mild water-stress treatment was imposed slowly; plants reached a minimum pre-dawn leaf water potential of about –1.5 MPa by day 12 after watering was withheld. Analysis of the water relation characteristics of growing leaves using the pressure–volume technique demonstrated that under water deficits all the cultivars changed their moisture-release curves compared with irrigated plants. Osmotic potential at full turgor was lowered in water-stressed plants of all the genotypes and the degree of such change was between 0.34 MPa and 0.58 MPa. Thus, turgor pressure was lost at a lower water potential in water-stressed plants than in irrigated plants of all the varieties. Volumetric elastic moduli were also increased under water deficits and the increase ranged between 10% and 141% among the cultivars. In all the genotypes, the stress imposed led to a reduction of leaf area and dry matter accumulation. Leaf expansion was very sensitive to low turgor pressure and it ceased when turgor reached 0.2 MPa. Thus, varieties able to maintain a higher degree of turgor pressure (i.e. by osmotic adjustment) under water deficits may be able to prolong leaf growth.  相似文献   

17.
The results of the experiment showed that leaf elongation rate in two wheat cultivars decreased under soil water stress. Rewatering after water stress, growth restoration.of “Changle No.5” was faster than that of “Lumai No.5”. The osmotic adjustment ability of leaves in these two wheat cultivars increased to 0.41MPa for “Changle No.5” and 0.33MPa for “Lumai No.5” as water potential decreased. At the same leaf elongation rate water potential and osmotic potential of “Changle No5” decreased more than that of “Lumai No.5” Leaf elongation rate fell to zero as water potential and osmotic potential were –1.50MPa and –1.70MPa for “Changle No.5” and –1.20MPa and –1.30MPa for “Lumai No.5” The threshold turgor pressure of elongation growth in leaf cell was different being 0.22MPa for “Changle No.5’ and 0.15MPa for “Lumai No.5”. The difference in the gross extensible coefficient of growing leaf was very small.  相似文献   

18.
Water transport is an integral part of the process of growth by cell expansion and accounts for most of the increase in cell volume characterizing growth. Under water deficiency, growth is readily inhibited and growth of roots is favoured over that of leaves. The mechanisms underlying this differential response are examined in terms of Lockhart's equations and water transport. For roots, when water potential (psi) is suddenly reduced, osmotic adjustment occurs rapidly to allow partial turgor recovery and re-establishment of psi gradient for water uptake, and the loosening ability of the cell wall increases as indicated by a rapid decline in yield-threshold turgor. These adjustments permit roots to resume growth under low psi. In contrast, in leaves under reductions in psi of similar magnitude, osmotic adjustment occurs slowly and wall loosening ability either does not increase substantially or actually decreases, leading to marked growth inhibition. The growth region of both roots and leaves are hydraulically isolated from the vascular system. This isolation protects the root from low psi in the mature xylem and facilitates the continued growth into new moist soil volume. Simulations with a leaky cable model that includes a sink term for growth water uptake show that growth zone psi is barely affected by soil water removal through transpiration. On the other hand, hydraulic isolation dictates that psi of the leaf growth region would be low and subjected to further reduction by high evaporative demand. Thus, a combination of transport and changes in growth parameters is proposed as the mechanism co-ordinating the growth of the two organs under conditions of soil moisture depletion. The model simulation also showed that roots behave as reversibly leaky cable in water uptake. Some field data on root water extraction and vertical profiles of psi in shoots are viewed as manifestations of these basic phenomena. Also discussed is the trade-off between high xylem conductance and strong osmotic adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号