首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以来源于安徽亳州和山西运城的菘蓝(Isatis indigotica Fort.)幼苗为实验材料,对100 mmol·L-1NaCl胁迫条件下喷施50.0、25.0、16.7、12.5和0.0 mg·L-15-氨基乙酰丙酸(ALA)后幼苗部分生长指标、叶片中靛蓝和靛玉红含量以及根中表告依春含量的变化进行了研究。结果表明:在100 mmol·L-1NaCl单一胁迫条件下,来源于安徽亳州的幼苗单株叶鲜质量和叶片中靛蓝和靛玉红含量均低于对照,单株根鲜质量、根冠比以及根中表告依春含量均高于对照;来源于山西运城的幼苗单株叶和根鲜质量、叶片中靛玉红含量和根中表告依春含量均低于对照,根冠比和叶片中靛蓝含量均高于对照。在NaCl胁迫过程中喷施ALA对菘蓝幼苗生长和有效成分的积累均有不同效应。其中,喷施25.0 mg·L-1ALA后安徽亳州产幼苗单株叶和根鲜质量均最高且显著高于NaCl单一胁迫处理组;喷施16.7 mg·L-1ALA后山西运城产幼苗单株叶和根鲜质量均较高但与NaCl单一胁迫处理组无显著差异。喷施50.0 mg·L-1ALA后安徽亳州产幼苗叶片中靛蓝含量最高(0.376 mg·g-1),喷施25.0 mg·L-1ALA后其叶片中靛玉红含量最高(9.977 mg·g-1),喷施16.7 mg·L-1ALA后其根中表告依春含量最高(0.229 mg·g-1),且均显著高于NaCl单一胁迫处理组;喷施16.7 mg·L-1ALA后山西运城产幼苗叶片中靛蓝含量最高(0.282 mg·g-1),喷施12.5 mg·L-1ALA后其叶片中靛玉红含量和根中表告依春含量均最高(分别为4.526和0.301 mg·g-1),且均显著高于NaCl单一胁迫处理组。研究结果表明:喷施适宜浓度ALA能够有效减轻NaCl胁迫对菘蓝幼苗生长的影响、提高其体内药用活性成分的含量;总体上看,产自安徽亳州的菘蓝幼苗的耐盐性较强,且不同种源适宜的ALA浓度也有一定差异。  相似文献   

2.
对菘蓝幼苗根系进行不同深度的淹水处理,采用HPLC法测定不同处理下菘蓝叶中靛蓝、靛玉红的含量。结果表明,淹水处理初期样品与对照相比,靛蓝的含量呈上升趋势,淹水后期急剧下降;靛玉红含量在淹水第1d急剧上升,之后随淹水时间延长不断降低。淹水深度越深对靛蓝、靛玉红含量影响越大。适当的淹水处理能诱导菘蓝叶中次生代谢产物靛蓝、靛玉红的合成与积累。该结果可为栽培菘蓝的质量控制和有效利用提供理论依据。  相似文献   

3.
采用盆栽方法,设置5种氮素营养水平(N0、N1、N2、N3、N4,分别为0、2.5、5、10、15 mmol·L-1),以苗期菘蓝的生物量、光合参数、氮同化物含量、氮代谢酶活性、叶中靛蓝、靛玉红、总黄酮含量以及根中(R,S)-告依春含量等作为指标,研究氮营养对苗期菘蓝生长及活性成分的影响。结果表明:N0—N3处理组菘蓝的株高、主根直径及单株干重显著降低,根冠比增加。随着氮素水平降低,菘蓝叶片的叶绿素、类胡萝卜素含量以及净光合速率、蒸腾速率、气孔导度均呈逐渐降低趋势,胞间二氧化碳浓度呈升高趋势。低氮营养使菘蓝叶片中可溶性蛋白、硝态氮、游离氨基酸含量降低,抑制了硝酸还原酶活性、谷氨酰胺合成酶活性。N0—N2处理组菘蓝叶片中的靛玉红及总黄酮含量较高,靛蓝含量在氮素水平为0~10 mmol·L-1范围内随着氮水平的降低而减小,(R,S)-告依春含量在N0处理时显著低于其余处理。综合分析认为,较低的供氮水平显著影响苗期菘蓝的生长及部分生理指标,降低叶片中的靛蓝与根中的(R,S)-告依春含量,但促进叶中靛玉红及总黄酮的积累。综合考虑苗期菘蓝的生物量与活性成分含量,将氮素水平控制在10~15 mmol·L-1范围内,可以获得产量稳定、活性成分含量较高的药材。  相似文献   

4.
缺氮和复氮对菘蓝幼苗生长及氮代谢的影响   总被引:1,自引:0,他引:1  
对基质育苗后水培的菘蓝进行缺氮与复氮处理,分析其生长情况及氮代谢产物含量的变化,探讨缺氮和复氮对菘蓝幼苗生长及氮代谢的影响,以提高菘蓝产量和品质以及栽培过程中的氮素利用效率。结果显示:(1)正常供氮条件下,菘蓝幼苗的叶绿素含量、谷氨酰胺合成酶(GS)活性、硝态氮含量、靛玉红含量为最高,而其株高、主根直径、根的鲜重与干重、叶的鲜重与干重、根系活力均最小。(2)缺氮处理增加了菘蓝幼苗的主根直径和根干重,提高其根系活力和硝酸还原酶(NR)活性,促进游离氨基酸在叶中的积累;但降低了GS的活性,也降低了叶中硝态氮、可溶性蛋白、靛玉红及根中游离氨基酸的含量;缺氮对叶中靛蓝的含量无明显影响。(3)复氮处理增加了菘蓝幼苗的株高、主根长、根鲜重、叶鲜重、叶干重,提高了其根系活力,降低了NR和GS的活性;与对照相比,复氮降低了叶中硝态氮含量,提高了叶中可溶性蛋白、靛蓝及根中游离氨基酸的含量,但对叶中游离氨基酸和靛玉红含量影响较小。研究表明,缺氮后再复氮有利于菘蓝幼苗叶的生长,同时有利于增加其叶内靛蓝含量,从而提高其产量和品质。  相似文献   

5.
以5份不同种源的菘蓝为材料,采用田间小区试验,设置不施氮(CK)、硝态氮(NO3--N)、铵态氮(NH4+-N)、NH4+-N/NO3--N=75/25、NH4+-N/NO3--N=50/50、NH4+-N/NO3--N=25/75和酰胺态氮等7个处理,分析比较了不同种源植株的靛蓝、靛玉红和总生物碱含量、(R,S)-告依春及多糖含量等指标的差异,为菘蓝栽培生产中氮素的高效利用提供理论参考。结果表明:氮素处理有利于提高山西运城菘蓝和陕西商洛菘蓝叶内靛蓝含量,以及安徽亳州菘蓝和陕西商洛菘蓝叶内的总生物碱含量;NH4+-N/NO3--N=50/50处理对山西运城菘蓝,以及酰胺态氮处理对山西运城菘蓝和陕西商洛菘蓝叶内生物碱类成分的积累均有促进作用;与对照相比,氮素处理亦能有效地提高甘肃张掖菘蓝和陕西商洛菘蓝根内的(R,S)-告依春及安徽亳州菘蓝根内的多糖含量;安徽阜阳菘蓝(R,S)-告依春含量在任一氮处理下均远远高于其他种质菘蓝。研究表明,不同种源菘蓝对氮素处理的响应存在较大的差异,建议生产中综合考虑菘蓝的来源和需肥规律,采用经济有效的施氮组合,以提高其活性成分含量。  相似文献   

6.
夏播菘蓝不同居群干物质和活性成分积累特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究夏播菘蓝不同栽培居群的最佳采收期,以来自于山西、安徽、甘肃、江苏和河南的5个栽培居群为材料,设置盆栽土培实验,于菘蓝生长第60天起,间隔10d采样,共采集6次样品,采用HPLC法测定其叶片、叶柄、根茎和根4个部位的靛蓝与靛玉红含量。结果表明:(1)不同栽培居群随着生长时间的延长,其叶片、叶柄、根茎及根的生物量持续增加,其中来自于山西居群的生长最佳,干物质积累量最大。(2)不同居群叶片及叶柄内靛蓝与靛玉红含量最大值出现在生长90~100d,即为叶内活性成分积累的高峰期。(3)综合分析其活性成分与干物质的积累量,各居群叶片靛蓝积累量最大值在生长90~100d,叶片、叶柄与根茎的靛玉红积累量也出现在90~100d。若以中国药典的靛玉红为质量控制指标,同时综合考察其生物量指标与活性成分积累量指标,夏季播种的来自于山西、安徽和河南的菘蓝居群最佳采收期为生长100d左右,而来自于甘肃与江苏居群的则以生长90d最佳。  相似文献   

7.
通过避雨盆栽方式,采用二因素裂区试验设计,以菘蓝的叶绿素含量、光合参数、叶内靛蓝与靛玉红含量、根内蛋白、多糖以及(R,S)-告依春含量等为指标,研究水氮互作对菘蓝光合生理及药材质量的影响,为菘蓝的优质栽培提供理论参考。结果表明:水氮互作能显著影响菘蓝的光合生理与药材质量,其中中度淹水与高氮水平(W2N3)的叶绿素含量、正常供水中氮水平(W0N2)的净光合速率(Pn)与气孔导度(Gs)、正常供水低氮水平(W0N1)的胞间二氧化碳浓度(Ci)与轻度淹水中氮水平(W1N2)的蒸腾速率(Tr)为各处理中的最大值,可见中氮N2水平下菘蓝叶片的光合作用和蒸腾作用得到加强;根内的(R,S)-告依春含量在中度淹水高氮水平(W2N3)处理时、多糖含量在轻度淹水中氮水平(W1N2)处理时均最高;中度淹水不施氮(W2N0)处理时根内蛋白含量、根与叶的总氮含量、叶内靛蓝和靛玉红含量均为各处理中的最大值,说明短期的中度淹水使菘蓝体内的次生代谢被激活,使其叶内与根内的活性成分含量增加。  相似文献   

8.
从嗜高温放线菌Thermobifida fusca中分离得到的苯基丙酮单加氧酶主要催化芳香族化合物的Baeyer-Villiger氧化反应。对该酶的结构和功能进行研究时,发现位于底物结合口袋的Met446位点突变可以赋予突变酶催化C-H键活化的新功能,氧化吲哚合成靛蓝和靛玉红,但产量仅为1.89 mg/L。为了获得合成靛蓝和靛玉红的全细胞催化剂,直接补加吲哚并不能提高细胞合成效率,补加吲哚的前体物质L-色氨酸可以使细胞合成靛蓝和靛玉红的能力提高4.5倍,达到8.43 mg/L。为了进一步提高细胞的生物合成效率,通过代谢工程改造大肠杆菌的糖代谢途径,阻断葡萄糖异构酶基因pgi,使磷酸戊糖途径代替糖酵解途径成为葡萄糖的主要代谢通路,从而为细胞提供更多氧化吲哚所需的辅因子NADPH,导致细胞合成靛蓝和靛玉红的效率进一步提高3倍,达到25 mg/L。通过组合蛋白质工程和代谢工程设计全细胞催化剂不仅可以高效地合成靛蓝和靛玉红,而且设计理念为相关全细胞催化剂的开发提供了一种新的策略。  相似文献   

9.
以来自山西的菘蓝(Isatis indigotica Fort.)为实验对象,采用盆栽法研究铵态氮(NH4+-N)、硝态氮(NO3--N)和酰胺态氮〔CO(NH2)2〕的不同配比对夏播菘蓝生长,叶和根中的可溶性蛋白质及总氮含量,根中多糖含量,叶中叶绿素相对含量,以及叶中靛玉红和靛蓝、根中(R,S)-告依春的含量和积累量的影响.结果表明:各施氮处理组的单株叶干质量均高于对照(不施用氮素)组,但单株根干质量或高于或低于对照组,其中,T4〔n(铵态氮):n(硝态氮):n(酰胺态氮)=25:75:0〕处理组的单株叶和根干质量均最大,且总体上显著高于对照组及其他施氮处理组(P<005);而施氮处理组的根冠比均显著低于对照组.各施氮处理组叶中的可溶性蛋白质含量与对照均无显著差异,但各施氮处理组根中的可溶性蛋白质含量、叶和根中的总氮含量以及叶中的叶绿素相对含量总体上显著高于对照组,而根中的多糖含量或高于或低于对照组,其中,T6〔n(铵态氮):n(硝态氮):n(酰胺态氮)=0:75:25〕处理组根中的多糖含量和叶中的叶绿素相对含量均最高,T3〔n(铵态氮):n(硝态氮):n(酰胺态氮)=50:50:0〕处理组叶和根中的可溶性蛋白质含量均较高.各施氮处理组叶中靛玉红含量总体上显著高于对照组,多数施氮处理组叶中靛蓝含量则显著低于对照组,但各施氮处理组的单株叶中靛蓝和靛玉红积累量总体上高于对照组;其中,T2〔n(铵态氮):n(硝态氮):n(酰胺态氮)=75:25:0〕处理组叶中靛玉红含量及其单株积累量均最高,T6处理组叶中靛蓝含量最高,而单株叶中靛蓝积累量则以T3处理组最高.各施氮处理组根中(R,S)-告依春含量总体上显著低于对照组,其中,以T1〔n(铵态氮):n(硝态氮):n(酰胺态氮)=100:0:0〕处理组根中(R,S)-告依春含量最高,T4处理组单株根中(R,S)-告依春积累量最高.综合分析结果表明:按不同配比施用不同形态氮素,夏播菘蓝的生长及活性成分含量有明显差异,因此,若以收获叶为目的,结合叶中靛玉红含量,建议施用铵态氮和硝态氮物质的量比为75:25的复合氮肥;若以收获根为目的,结合根中(R,S)-告依春含量,建议施用铵态氮和硝态氮物质的量比为25:75的复合氮肥.  相似文献   

10.
Yao SM  Ru ZG  Liu MJ  Yang WP  Feng SW  Li G 《应用生态学报》2011,22(2):383-388
以百农矮抗58小麦为材料,采用大田试验的方法,研究了始穗期喷施不同浓度(0,10、30、50 mg·L-1)的5-氨基乙酰丙酸(ALA)对冬小麦花后干物质生产和旗叶衰老的影响.结果表明:10~50 mg·L-1 ALA处理有利于植株对干物质的积累,至成熟期其干物质总量明显高于对照(0 mg·L-1);10~50 mg·L-1 ALA处理各器官干物质的分配率与对照没有显著性差异,但其花后生产的干物质对产量的贡献率显著高于对照;在开花期,10~50 mg·L-1ALA处理的叶面积指数与对照没有显著性差异,但在乳熟期和腊熟期,叶面积指数显著高于对照.从开花期至蜡熟期,10~50 mg·L-1 ALA处理的旗叶SPAD值和净光合速率均高于对照;在灌浆后期,ALA处理降低了旗叶丙二醛(MDA)含量和相对电导率.与对照相比,10~50mg·L-1 ALA处理冬小麦的穗粒数、千粒重和产量显著增加,其中以30 mg·L-1 ALA处理增产效果最大.  相似文献   

11.
Question: Do thick‐twigged/large‐leaf species have an advantage in leaf display over their counterparts, and what are the effects of leaf habit and leaf form on the leaf‐stem relationship in plant twigs of temperature broadleaf woody species? Location: Gongga Mountain, southwest China. Methods: (1) We investigated stem cross‐sectional area and stem mass, leaf area and leaf/lamina mass of plant twigs (terminal branches of current‐year shoots) of 89 species belonging to 55 genera in 31 families. (2) Data were analyzed to determine leaf‐stem scaling relationships using both the Model type II regression method and the phylogenetically independent comparative (PIC) method. Results: (1) Significant, positive allometric relationships were found between twig cross‐sectional area and total leaf area supported by the twig, and between the cross‐sectional area and individual leaf area, suggesting that species with large leaves and thick twigs could support a disproportionately greater leaf area for a given twig cross‐sectional area. (2) However, the scaling relationships between twig stem mass and total leaf area and between stem mass and total lamina mass were approximately isometric, which indicates that the efficiency of deploying leaf area and lamina mass was independent of leaf size and twig size. The results of PIC were consistent with these correlations. (3) The evergreen species were usually smaller in total leaf area for a given twig stem investment in terms of both cross‐sectional area and stem mass, compared to deciduous species. Leaf mass per area (LMA) was negatively associated with the stem efficiency in deploying leaf area. (4) Compound leaf species could usually support a larger leaf area for a given twig stem mass and were usually larger in both leaf size and twig size than simple leaf species. Conclusions: Generally, thick‐twigged/large‐leaf species do not have an advantage over their counterparts in deploying photosynthetic compartments for a given twig stem investment. Leaf habit and leaf form types can modify leaf‐stem scaling relationships, possibly because of contrasting leaf properties. The leaf size‐twig size spectrum is related to the LMA‐leaf life span dimension of plant life history strategies.  相似文献   

12.
D. D. Ackerly 《Oecologia》1992,89(4):596-600
Summary Tropical vines in the Araceae family commonly exhibit alternating periods of upward and downward growth, decoupling the usual relationship between decreasing light environment with increasing age among the leaves on a shoot. In this study I examined patterns of light, leaf specific mass, and leaf nitrogen concentration in relation to leaf position, a measure of developmental age, in field collected shoots of Syngonium podophyllum. These data were analyzed to test the hypothesis that nitrogen allocation parallels within-shoot gradients of light availability, regardless of the relationship between light and leaf age. I found that leaf nitrogen concentration, on a mass basis, was weakly correlated with leaf level light environment. However, leaf specific mass, and consequently nitrogen per unit leaf area, were positively correlated with gradients of light within the shoot, and either increased or decreased with leaf age, providing support for the hypothesis that nitrogen allocation parallels gradients of light availability.  相似文献   

13.
Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent.  相似文献   

14.
Development of phoma leaf spot (caused by Leptosphaeria maculans) on winter oilseed rape (canola, Brassica napus) was assessed in two experiments at Rothamsted in successive years (2003–04 and 2004–05 growing seasons). Both experiments compared oilseed rape cultivars Eurol, Darmor, Canberra and Lipton, which differ in their resistance to L. maculans. Data were analysed to describe disease development in terms of increasing numbers of leaves affected over thermal time from sowing. The cultivars showed similar patterns of leaf spot development in the 2003–04 experiment when inoculum concentration was relatively low (up to 133 ascospores m−3 air), Darmor developing 5.3 diseased leaves per plant by 5 May 2004, Canberra 6.6, Eurol 6.8 and Lipton 7.5. Inoculum concentration was up to sevenfold greater in 2004–05, with Eurol and Darmor developing 2.4 diseased leaves per plant by 16 February 2005, whereas Lipton and Canberra developed 2.8 and 3.0 diseased leaves, respectively. Based on three defined periods of crop development, a piece-wise linear statistical model was applied to the progress of the leaf spot disease (cumulative diseased leaves) in relation to appearance (‘birth’) and death of leaves for individual plants of each cultivar. Estimates of the thermal time from sowing until appearance of the first leaf or death of the first leaf, the rate of increase in number of diseased leaves and the area under the disease progress line (AUDPL) for the first time period were made. In 2004–05, Canberra (1025 leaves ×°C days) and Lipton (879) had greater AUDPL values than Eurol (427) and Darmor (598). For Darmor and Lipton, the severity of leaf spotting could be related to the severity of stem canker at harvest. Eurol had less leaf spotting but severe stem canker, whereas Canberra had more leaf spotting but less severe canker.  相似文献   

15.
Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-massN mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass, R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits. Received: 23 May 1997 / Accepted: 16 December 1997  相似文献   

16.
Vanadate (Na3 VO4) inhibits leaf movement and stomatal conductance of Phaseolus vulgaris L. cv. Carlos Favorit in light-dark cycles as well as photomorphogenetic leaf unrolling of Hordeum vulgare L. cv. Rupal. Inhibition was 50% by 10 to 100 micromolar vanadate and 100% by millimolar vanadate. Leaf unrolling was also inhibited by oligomycin and diethylstilbestrol.  相似文献   

17.
Effect of removal of snow cover in winter was investigated in an 80-year-old sugar maple (Acer saccharum Marsh.) stand in southern Quebec. We hypothesized that winter soil frost would induce some of the decline symptoms observed in sugar maple stands in southern Quebec in the early 1980's. Snow was continuously removed from around trees for a one week (partial removal) or for a four-month period (complete removal) during the 1990–1991 winter. Foliage and soils were sampled periodically during the summer of 1991. The complete snow removal treated trees showed decreased leaf water potential and increased peroxidase activity over most of the growing season. Foliar Ca was reduced in both snow removal treatments early in the growing season while foliar N was reduced in the complete snow removal trees late in the growing season. Soil NO 3 and K+ were elevated in both snow removal treatments at various times throughout the growing season. Prolonged soil frost in a sugar maple stand can induce lower leaf water potential, higher leaf peroxidase activity and early leaf senescence during the following growing season. Soil frost may have reduced nutrient uptake without affecting significantly the leaf nutrient status.  相似文献   

18.
Abstract. 1. The effects of leaf toughness on mandibular wear of the leaf beetle Plagiodera versicolora Laich. (Coleoptera: Chrysomelidae) were evaluated by feeding adult beetles young (tender) and old (tough) leaves of Salix babylonica and S. alba 'Tristis'.
2. Tough leaves erode the cutting surface of beetle jaws more so than tender leaves.
3. Beetles with worn jaws consumed leaves at a slower rate than ones with less mandibular wear.
4. Because rates of leaf consumption and egg production are positively correlated, increased mandibular wear may reduce beetle fecundity.
5. These results support the belief that leaf toughness may act as a potent defence affecting morphology, feeding behaviour, and ultimately spatial and temporal patterns of herbivores.  相似文献   

19.
The question as to what triggers stomatal closure during leaf desiccation remains controversial. This paper examines characteristics of the vascular and photosynthetic functions of the leaf to determine which responds most similarly to stomata during desiccation. Leaf hydraulic conductance (K(leaf)) was measured from the relaxation kinetics of leaf water potential (Psi(l)), and a novel application of this technique allowed the response of K(leaf) to Psi(l) to be determined. These "vulnerability curves" show that K(leaf) is highly sensitive to Psi(l) and that the response of stomatal conductance to Psi(l) is closely correlated with the response of K(leaf) to Psi(l). The turgor loss point of leaves was also correlated with K(leaf) and stomatal closure, whereas the decline in PSII quantum yield during leaf drying occurred at a lower Psi(l) than stomatal closure. These results indicate that stomatal closure is primarily coordinated with K(leaf). However, the close proximity of Psi(l) at initial stomatal closure and initial loss of K(leaf) suggest that partial loss of K(leaf) might occur regularly, presumably necessitating repair of embolisms.  相似文献   

20.
In wheat (Triticum aestivum cv. Soissons) plants grown under three different fertilisation treatments, we quantified the effect of leaf rust (Puccinia triticina) on flag leaf photosynthesis during the whole sporulation period. Bastiaans' model: Y = (1 - x)beta was used to characterize the relationship between relative leaf photosynthesis (Y) and disease severity (x). The evolution of the different types of symptoms induced by the pathogen (sporulating, chlorotic and necrosed tissues) was evaluated using image analysis. The beta-values varied from 2 to 11, 1.4-2, and 0.8-1 during the sporulation period, when considering the proportion of sporulating, sporulating + necrotic, and total diseased area, respectively. Leaf nitrogen (N) content did not change the effect of the disease on host photosynthesis. We concluded that leaf rust has no global effect on the photosynthesis of the symptomless parts of the leaves and that the large range in the quantification of leaf rust effect on the host, which is found in the literature, can be accounted for by considering the different symptom types. We discuss how our results could improve disease assessments and damage prediction in a wheat crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号