首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
钠离子通道与蜜蜂狄斯瓦螨对氟胺氰菊酯的抗性机理   总被引:1,自引:0,他引:1  
周婷  王强  姚军 《昆虫知识》2003,40(6):491-495
狄斯瓦螨Varroadestructor是全世界蜜蜂最严重的寄生虫 ,目前 ,它对主要防治药物———拟除虫菊酯类的氟胺氰菊酯已产生明显抗性 ,严重影响其防治效果。近年来神经生理学研究结果证实 :电压门控的钠离子通道是拟除虫菊酯作用的位点。钠通道结构的改变 ,是拟除虫菊酯类杀虫剂毒理的主要基础 ,也是产生抗药性的基础。该文介绍了近年来国内外研究电压门控钠离子通道、拟除虫菊酯对钠通道的作用、钠通道与拟除虫菊酯的抗性和狄斯瓦螨对氟胺氰菊酯抗性机理研究的新进展  相似文献   

2.
陈斌  鲜鹏杰  乔梁  周勇 《昆虫学报》2015,58(10):1116-1125
昆虫电压门控钠离子通道(voltage-gated sodium channel)存在于所有可兴奋细胞的细胞膜上,在动作电位的产生和传导上起重要作用,是有机氯和拟除虫菊酯杀虫剂的靶标位点。在农业和医学害虫控制过程中,由于有机氯和拟除虫菊酯杀虫剂的广泛使用,抗药性问题日益突出。其中,由于钠离子通道基因突变,降低了钠离子通道对有机氯和拟除虫菊酯类杀虫剂的亲和性,从而产生击倒抗性(knock-down resistance, kdr),已成为抗性产生的重要机制之一。本文综述了昆虫钠离子通道的跨膜拓扑结构、功能、进化及其基因的克隆;更重要的是总结了已报道的40多种昆虫40个钠离子通道基因非同义突变,以及钠离子通道基因选择性mRNA剪接和编辑,以及它们与杀虫剂抗性的关系;也评述了钠离子通道基因突变引起蛋白质结构的改变,从而对杀虫剂抗性的影响机制。这些研究对于进一步鉴定与杀虫剂抗性相关的突变及抗性机制,开发有机氯和拟除虫菊酯类杀虫剂抗性分子监测方法具有重要意义。  相似文献   

3.
云南烟蚜抗药性机制研究   总被引:1,自引:0,他引:1  
通过比较云南烟蚜敏感品系和抗性品系的解毒酶(α-乙酸萘酯羧酸酯酶、β-乙酸萘酯羧酸酯酶)和靶标酶(乙酰胆碱酯酶)的活力,研究了烟蚜对有机磷、拟除虫菊酯和氨基甲酸酯类杀虫剂抗性的生化机制,并通过酯酶基因扩增检测和钠离子通道突变检测,研究了其抗性的分子机制。结果表明:α-乙酸萘酯羧酸酯酶活力增强是烟蚜对有机磷类、氨基甲酸酯类杀虫剂及拟除虫菊酯类杀虫剂的抗性机制之一;乙酰胆碱酯酶在烟蚜对有机磷杀虫剂抗性中起重要作用;3个抗性品系烟蚜均没有发生酯酶基因扩增,抗拟除虫菊酯品系烟蚜发生了钠离子通道突变。  相似文献   

4.
烟粉虱对拟除虫菊酯杀虫剂的抗性机理   总被引:4,自引:1,他引:3  
通过增效剂生物测定、生化分析以及钠离子通道基因ⅡS4-6 cDNA片段的RT-PCR扩增,探讨了烟粉虱Bemisia tabaci(Gennadius)对拟除虫菊酯杀虫剂的抗性机理。结果表明:对于采自田间的6个烟粉虱抗性品系,磷酸三苯酯(TPP)和胡椒基丁醚(PBO)对氯氰菊酯、溴氰菊酯、氯氟氰菊酯和甲氰菊酯均有显著的增效作用,而DEM对4种拟除虫菊酯杀虫剂均无明显的增效作用。烟粉虱抗性品系的α-NA羧酸酯酶和β-NA羧酸酯酶活性分别是敏感品系的2.16~2.65倍和1.22~1.41倍,抗性品系的谷胱甘肽S转移酶活性与敏感品系没有差异,表明羧酸酯酶和多功能氧化酶在烟粉虱对拟除虫菊酯类杀虫剂的抗性中具有重要的作用,而谷胱甘肽S转移酶与抗性无关。通过RT-PCR克隆了6个烟粉虱田间抗性品系的钠离子通道结构域ⅡS4-6 cDNA片段的序列(420 bp),发现与敏感品系相比,有2个位点发生突变,分别为L925I突变和I917V突变,L925I突变在所有6个烟粉虱田间抗性种群中均有发生,该位点突变已被证实与拟除虫菊酯类杀虫剂密切相关,表明神经不敏感性可能是烟粉虱对拟除虫菊酯产生抗性的另一个重要因子。  相似文献   

5.
击倒抗性和钠离子通道   总被引:5,自引:0,他引:5  
综述了击倒抗性与钠离子通道关系的研究进展。毒理学和电生理学的研究表明,在许多拟除虫菊酯类杀虫剂抗性昆虫中存在击倒抗性。分子遗传学研究进一步发现,击倒抗性与钠离子通道位点连锁。最近的研究表明,昆虫神经系统对拟除虫菊酯类杀虫剂敏感性下降的击倒抗性机制是钠离子通道结构基因突变。但仍有一些问题,如突变的保守性和分布,需要进一步研究、阐明。  相似文献   

6.
昆虫抗药性靶标不敏感机制的研究进展   总被引:21,自引:0,他引:21  
李显春  王荫长 《昆虫学报》1998,41(4):417-425
靶标不敏感(targetsiteinsensitivity)是昆虫对杀虫剂产生抗药性的一个极为重要的生化机制,已在多种昆虫对多种杀虫剂的抗性中发现[1,2],最著名的便是:变构乙酰胆碱酯酶(alteredacetvlcholinesterase,简称变构AChE)对有机磷和氨基甲酸酯类杀虫剂的抗性、不敏感的Na 通道(insensitivesodiumchannel)对DDT和除虫菊酯的击倒抗性(knockdownresistance,kdr),以及不敏感的γ-氨基丁酸受体(insensitiveGABAreceptor)对环戊二烯类杀虫剂和γ-六六六的抗性[3]。80年代以来,众多学者利用各种技术尤其是分子生物学技术对上述靶…  相似文献   

7.
蜜蜂是最重要的农业授粉昆虫之一,蜜蜂在授粉过程中极有可能接触到广泛使用的广谱杀虫剂-拟除虫菊酯,大多数拟除虫菊酯对蜜蜂等农业授粉昆虫有较高的毒性.本文对拟除虫菊酯类杀虫剂的作用机理进行了综述;总结了蜂群及蜂产品中拟除虫菊酯类杀虫剂的残留现状、拟除虫菊酯对蜜蜂的急性毒性以及亚致死效应,讨论了拟除虫菊酯类杀虫剂复配农药对蜜...  相似文献   

8.
害虫的抗药性:Ⅶ.昆虫对拟除虫菊酯抗性机理   总被引:1,自引:0,他引:1  
<正> 合成的拟除虫菊酯类杀虫剂是近年来新发展的高效低残毒杀虫剂,它们对哺乳动物和昆虫的选择毒性要比有机磷、氨基甲酸醋类杀虫剂高出二个数量级,可以说是化学防治中崛起的新星。在70年代初,拟除虫菊酯作为商品问世之初,人们曾根据昆虫似乎对天然除虫菊酯抗性发展较慢的情况预测到昆虫也许不易对  相似文献   

9.
棉蚜(Aphis gossypu Glover)是我国北方棉区的主要害虫。自1953年开始使用有机磷杀虫剂对硫磷和1059等防治棉蚜以来,田间喷雾浓度和使用次数逐年增大,棉蚜产生的抗性。80年代使用高效拟除虫菊酯类杀虫剂溴氰菊酯和氰戊菊酯等,三年后棉蚜抗性增长了171倍,有些地区达3230倍。此文报道棉蚜的抗性机制的研究结果,证实了棉蚜抗性与杀虫剂穿透能力降低、多功能氧化酶、α-乙酸萘酯酶和α-乙酸萘酯羧酸酶的活力增加、乙酰胆碱酯酶对杀虫剂敏感性的降低有关。在这基础上进行增效剂SV_1对多种有机磷和拟除虫菊酯杀虫剂的增效试验,得出SV_1对防治抗性棉蚜有明显的增效作用,能延缓抗性的发展。并研究了杀虫剂抗性的防治策略及综合治理措施,为防治棉蚜抗性和延缓抗性发展取得了较好的效果。  相似文献   

10.
昆虫钠离子通道的研究进展   总被引:1,自引:0,他引:1  
昆虫只有一个或两个电压门控钠离子通道α亚基基因,但两种转录后修饰(选择性剪切和RNA编辑)实现了昆虫钠离子通道的功能多样性。昆虫β辅助亚基TipE和TEH1-4在钠离子通道表达和调控中也起着重要作用。电压门控钠离子通道在动作电位的产生和传递中至关重要,是多种天然和人工合成神经毒素及杀虫剂的作用靶标,包括广泛使用的拟除虫菊酯类、茚虫威和氰氟虫腙等杀虫剂。其中,拟除虫菊酯类杀虫剂通过调控昆虫钠离子通道的失活和去激活,延长跨膜钠离子流的时间,引起神经兴奋性传导障碍;茚虫威和氰氟虫腙阻断昆虫中枢和外周神经系统神经元的动作电位传导,这些神经毒剂都能干扰昆虫钠离子通道的正常功能。昆虫钠离子通道一般存在两个拟除虫菊酯类杀虫剂结合位点,但不同物种钠离子通道与拟除虫菊酯的结合位点存在一定差异。据此,本文就昆虫钠离子通道及其与杀虫剂的相互作用加以综述,有望推动昆虫神经受体研究,且对鉴定昆虫抗药性相关突变位点和研发高效的杀虫剂均具有重要参考价值。  相似文献   

11.
The molecular biology of knockdown resistance to pyrethroid insecticides   总被引:29,自引:0,他引:29  
The term "knockdown resistance" is used to describe cases of resistance to diphenylethane (e.g. DDT) and pyrethroid insecticides in insects and other arthropods that result from reduced sensitivity of the nervous system. Knockdown resistance, first identified and characterized in the house fly (Musca domestica) in the 1950's, remains a threat to the continued usefulness of pyrethroids in the control of many pest species. Research since 1990 has provided a wealth of new information on the molecular basis of knockdown resistance. This paper reviews these recent developments with emphasis on the results of genetic linkage analyses, the identification of gene mutations associated with knockdown resistance, and the functional characterization of resistance-associated mutations. Results of these studies identify voltage-sensitive sodium channel genes orthologous to the para gene of Drosophila melanogaster as the site of multiple knockdown resistance mutations and define the molecular mechanisms by which these mutations cause pyrethroid resistance. These results also provide new insight into the mechanisms by which pyrethroids modify the function of voltage-sensitive sodium channels.  相似文献   

12.
13.
The super-kdr insecticide resistance trait of the house fly confers resistance to pyrethroids and DDT by reducing the sensitivity of the fly nervous system. The super-kdr genetic locus is tightly linked to the Vssc1 gene, which encodes a voltage-sensitive sodium channel alpha subunit that is the principal site of pyrethroid action. DNA sequence analysis of Vssc1 alleles from several independent super-kdr fly strains identified two amino acid substitutions associated with the super-kdr trait: replacement of leucine at position 1014 with phenylalanine (L1014F), which has been shown to cause the kdr resistance trait in this species, and replacement of methionine at position 918 with threonine (M918T). We examined the functional significance of these mutations by expressing house fly sodium channels containing them in Xenopus laevis oocytes and by characterizing the biophysical properties and pyrethroid sensitivities of the expressed channels using two-electrode voltage clamp. House fly sodium channels that were specifically modified by site-directed mutagenesis to contain the M918T/L1014F double mutation gave reduced levels of sodium current expression in oocytes but otherwise exhibited functional properties similar to those of wildtype channels and channels containing the L1014F substitution. However, M918T/L1014F channels were completely insensitive to high concentrations of the pyrethroids cismethrin and cypermethrin. House fly sodium channels specifically modified to contain the M918T single mutation, which is not known to exist in nature except in association with the L1014F mutation, gave very small sodium currents in oocytes. Assays of these currents in the presence of high concentrations of cismethrin suggest that this mutation alone is sufficient to abolish the pyrethroid sensitivity of house fly sodium channels. These results define the functional significance of the Vssc1 mutations associated with the super-kdr trait of the house fly and are consistent with the hypothesis that the super-kdr trait arose by selection of a second-site mutation (M918T) that confers to flies possessing it even greater resistance than the kdr allele containing the L1014F mutation.  相似文献   

14.
The peach-potato aphid, Myzus persicae (sulzer), is an important arable pest species throughout the world. Extensive use of insecticides has led to the selection of resistance to most chemical classes including organochlorines, organophosphates, carbamates and pyrethroids. Resistance to pyrethroids is often the result of mutations in the para-type sodium channel protein (knockdown resistance or kdr). In M. persicae, knockdown resistance is associated with two amino-acid substitutions, L1014F (kdr) and M918T (super-kdr). In this study, the temporal and spatial distributions of these mutations, diagnosed using an allelic discriminating polymerase chain reaction assay, were investigated alongside other resistance mechanisms (modified acetylcholinesterase (MACE) and elevated carboxylesterases). Samples were collected from the UK, mainland Europe, Zimbabwe and south-eastern Australia. The kdr mutation and elevated carboxylesterases were widely distributed and recorded from nearly every country. MACE and super-kdr were widespread in Europe but absent from Australian samples. The detection of a strongly significant heterozygote excess for both kdr and super-kdr throughout implies strong selection against individuals homozygous for these resistance mutations. The pattern of distribution found in the UK seemed to indicate strong selection against the super-kdr (but not the kdr) mutation in any genotype, in the absence of insecticide pressure. There was a significant association (linkage disequilibrium) between different resistance mechanisms, which was probably promoted by a lack of recombination due to parthenogenesis.  相似文献   

15.
Aedes aegypti is a primary vector of viral pathogens and is responsible for millions of human infections annually that represent critical public health and economic costs. Pyrethroids are one of the most commonly used classes of insecticides to control adult A. aegypti. The insecticidal activity of pyrethroids depends on their ability to bind and disrupt the voltage-sensitive sodium channel (VSSC). In mosquitoes, a common mechanism of resistance to pyrethroids is due to mutations in Vssc (hereafter referred as knockdown resistance, kdr). In this study, we found that a kdr (410L+V1016I+1534C) allele was the main mechanism of resistance in a pyrethroid-resistant strain of A. aegypti collected in Colombia. To characterize the level of resistance these mutations confer, we isolated a pyrethroid resistant strain (LMRKDR:RK, LKR) that was congenic to the susceptible Rockefeller (ROCK) strain. The full-length cDNA of Vssc was cloned from LKR and no additional resistance mutations were present. The levels of resistance to different pyrethroids varied from 3.9- to 56-fold. We compared the levels of resistance to pyrethroids, DCJW and DDT between LKR and what was previously reported in two other congenic strains that share the same pyrethroid-susceptible background (the ROCK strain), but carry different kdr alleles (F1534C or S989P + V1016G). The resistance conferred by kdr alleles can vary depending on the stereochemistry of the pyrethroid. The 410L+1016I+1534C kdr allele does not confer higher levels of resistance to six of ten pyrethroids, relative to the 1534C allele. The importance of these results to understand the evolution of insecticide resistance and mosquito control are discussed.  相似文献   

16.
Voltage-gated sodium channels are the presumed site of action of pyrethroid insecticides and DDT. We screened several mutant sodium channel Drosophila lines for resistance to type I pyrethroids. In insecticidal bioassays the para(74) and para(DN7) fly lines showed greater than 4-fold resistance to allethrin relative to the allethrin sensitive Canton-S control line. The amino acid substitutions of both mutants are in domain III. The point mutation associated with para(74) lies within the S6 transmembrane region and the amino acid substitution associated with para(DN7) lies within the S4-S5 linker region. These sites are analogous to the mutations in domain II underlying knockdown resistance (kdr) and super-kdr, naturally occurring forms of pyrethroid resistance found in houseflies and other insects. Electrophysiological studies were performed on isolated Drosophila neurons from wild type and para(74) embryos placed in primary culture for three days to two weeks. The mutant para(74) sodium currents were kinetically similar to wild type currents, in activation, inactivation and time to peak. The only observed difference between para(74) and wild-type neurons was in the affinity of the type I pyrethroid, allethrin. Application of 500 nM allethrin caused removal of inactivation and prolonged tail currents in wild type sodium channels but had little or no effect on para(74) mutant sodium channels.  相似文献   

17.
Recent advances in the characterisation of insect sodium channel gene sequences have identified a small number of point mutations within the channel protein that are implicated in conferring target-site resistance to pyrethroid insecticides (so-called knockdown resistance or kdr). The L1014F (leucine-to-phenylalanine) mutation located in the centre of segment 6 of the domain II region (IIS6) of the sodium channel (the so-called kdr trait) has been detected in the peach-potato aphid, Myzus persicae (Sulzer), and is considered to be the primary cause of pyrethroid resistance in this species. Here we report on the characterisation of a second mutation, M918T (methione-to-threonine), within the nearby IIS4-S5 intracellular linker (the so-called super-kdr trait) in a field clone also possessing L1014F, with both mutations present in heterozygous form. The resistance phenotype of M. persicae clones possessing various combinations of L1014F and M918T to a wide range of pyrethroids (both Type I and II) was assessed in leaf-dip bioassays and to lambda-cyhalothrin applied at up to ten times the recommended field rate as foliar sprays to aphids feeding on whole plants. Bioassay results demonstrated that presence of both mutations was associated with extreme resistance to all the pyrethroids tested relative to aphids lacking the mutations. Furthermore, this resistance well exceeded that shown by aphids that were homozygous for L1014F but lacking M918T. However, pre-treatment with piperonyl butoxide in the leaf-dip bioassays failed to suppress pyrethroid resistance in aphids carrying one or both of the mutations. The relevance of these findings for monitoring and managing pyrethroid resistance in M. persicae populations in the field is discussed.  相似文献   

18.
The gene para in Drosophila melanogaster encodes an α subunit of voltage-activated sodium channels, the presumed site of action of DDT and pyrethroid insecticides. We used an existing collection of Drosophila para mutants to examine the molecular basis of target-site resistance to pyrethroids and DDT. Six out of thirteen mutants tested were associated with a largely dominant, 10- to 30-fold increase in DDT resistance. The amino acid lesions associated with these alleles defined four sites in the sodium channel polypeptide where a mutational change can cause resistance: within the intracellular loop between S4 and S5 in homology domains I and III, within the pore region of homology domain III, and within S6 in homology domain III. Some of these sites are analogous with those defined by knockdown resistance (kdr) and super-kdr resistance-associated mutations in houseflies and other insects, but are located in different homologous units of the channel polypeptide. We find a striking synergism in resistance levels with particular heterozygous combinations of para alleles that appears to mimic the super-kdr double mutant housefly phenotype. Our results indicate that the alleles analyzed from natural populations represent only a subset of mutations that can confer resistance. The implications for the binding site of pyrethroids and mechanisms of target-site insensitivity are discussed. Received: 9 May 1997 / Accepted: 21 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号