首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Within the last two decades, 4-hydroxynonenal has emerged as an important second messenger involved in the regulation of various cellular processes. Our recent studies suggest that HNE can induce apoptosis in various cells through the death receptor Fas (CD95)-mediated extrinsic pathway as well as through the p53-dependent intrinsic pathway. Interestingly, through its interaction with the nuclear protein Daxx, HNE can self-limit its apoptotic role by translocating Daxx to cytoplasm where it binds to Fas and inhibits Fas-mediated apoptosis. In this paper, after briefly describing recent studies on various biological activities of HNE, based on its interactions with Fas, Daxx, and p53, we speculate on possible mechanisms through which HNE may affect a multitude of cellular processes and draw a parallel between signaling roles of H(2)O(2) and HNE.  相似文献   

2.
Daxx silencing sensitizes cells to multiple apoptotic pathways   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

3.
The Fas (apo/CD95) receptor which belongs to the TNF-alpha family is a transmembrane protein involved in the signaling for apoptosis through the extrinsic pathway. During this study, we have examined a correlation between intracellular levels of 4-HNE and expression of Fas in human lens epithelial (HLE B-3) cells. Our results show that in HLE B-3 cells, Fas is induced by 4-HNE in a concentration- and time-dependent manner, and it is accompanied by the activation of JNK, caspase 3, and the onset of apoptosis. Fas induction and activation of JNK are also observed in various tissues of mGsta4 null mice which have elevated levels of 4-HNE. Conversely, when 4-HNE is depleted in HLE B-3 cells by a transient transfection with hGSTA4, Fas expression is suppressed. However, upon the cessation of hGSTA4 expression in these transiently transfected cells, Fas and 4-HNE return to their basal levels. Fas-deficient transformed HLE B-3 cells stably transfected with hGSTA4 show remarkable resistance to apoptosis. Also, the wild-type HLE B-3 cells in which Fas is partially depleted by siRNA acquire resistance to 4-HNE-induced apoptosis, suggesting an at least partial role of Fas in 4-HNE-induced apoptosis in HLE B-3 cells. We also demonstrate that during 4-HNE-induced apoptosis of HLE B-3 cells, Daxx is induced and it binds to Fas. Together, these results show an important role of 4-HNE in regulation of the expression and functions of Fas.  相似文献   

4.
Reovirus infection is a well-characterized experimental system for the study of viral pathogenesis and antiviral immunity within the central nervous system (CNS). We have previously shown that c-Jun N-terminal kinase (JNK) and the Fas death receptor each play a role in neuronal apoptosis occurring in reovirus-infected brains. Death-associated protein 6 (Daxx) is a cellular protein that mechanistically links Fas signaling to JNK signaling in several models of apoptosis. In the present study, we demonstrate that Daxx is upregulated in reovirus-infected brain tissue through a type I interferon-mediated mechanism. Daxx upregulation is limited to brain regions that undergo reovirus-induced apoptosis and occurs in the cytoplasm and nucleus of neurons. Cytoplasmic Daxx is present in Fas-expressing cells during reovirus encephalitis, suggesting a role for Daxx in Fas-mediated apoptosis following reovirus infection. Further, in vitro expression of a dominant negative form of Daxx (DN-Daxx), which binds to Fas but which does not transmit downstream signaling, inhibits apoptosis of reovirus-infected cells. In contrast, in vitro depletion of Daxx results in increased expression of caspase 3 and apoptosis, suggesting that Daxx plays an antiapoptotic role in the nucleus. Overall, these data imply a regulatory role for Daxx in reovirus-induced apoptosis, depending on its location in the nucleus or cytoplasm.  相似文献   

5.
6.
7.
Daxx enhances Fas-mediated apoptosis in a murine pro-B cell line,BAF3   总被引:3,自引:0,他引:3  
Daxx has been shown to play an essential in type I interferon (IFN-/β)-mediated suppression of B cell development and apoptosis. Recently, we demonstrated that Tyk2 is directly involved in IFN signaling for the induction and nuclear translocation of Daxx, which may result in growth arrest and/or apoptosis of B lymphocyte progenitors. To clarify the mechanism of Daxx-mediated apoptosis signaling in B lymphocyte progenitors, here we introduced an efficient suicide switch in a murine pro-B cell line, BAF3, by expressing FK506-binding protein-fused Fas intracellular domain (FKBP-Fas) and Daxx. It allows us to monitor Fas/Daxx-mediated signal by induction of Fas dimerization with the dimerizer drug AP20187. AP20187-mediated Fas dimerization induced not only apoptosis but also Jun N-terminal kinase (JNK) activation. However, AP20187 had no effect on cells expressing either Fas or Daxx only. Furthermore, expression of a JNK inhibitor, the JNK-binding domain of JIP-1, resulted in resistance to AP20187-mediated apoptosis in cells expressing FKBP-Fas and Daxx. These results imply that our novel suicide switch system may provide a powerful tool to delineate or identify the signaling molecules for Daxx-mediated apoptotic machinery in B lymphocyte progenitors through JNK activation.  相似文献   

8.
9.
Oxidative stress induces apoptosis in a variety of cell types by as yet unclear signaling mechanisms. The Daxx protein is reportedly involved in apoptosis through its interactions with Fas, transforming growth factor-beta receptor, and promyelocytic leukemia protein (PML). Here, we explored the possible roles of Daxx in oxidative stress-induced apoptosis. We found that both the mRNA and protein levels of Daxx markedly increased when cells underwent apoptosis after H2O2 treatment. Pretreatment with the cell-permeable antioxidant, N-acetyl cysteine, prevented cells from H2O2-induced Daxx upregulation and subsequent apoptosis, indicating that the endogenous oxidant regulated Daxx expression. Furthermore, suppression of endogenous Daxx expression by antisense oligonucleotide technology inhibited oxidative stress-induced apoptosis in HeLa cells. Taken together, these results suggest that Daxx acts as an intermediary messenger of pro-apoptotic signals triggered by oxidative stress.  相似文献   

10.
11.
The anti-tumor effect of Icariside II (IcaS), a natural prenylated flavonol glycoside, was studied on human breast cancer MCF7 cells to unveil the underlying mechanisms involved. IcaS in MCF7 cells produced a loss of mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 revealed the involvement of the intrinsic apoptosis pathway. In contrast, IcaS enhanced the expression level of Fas and the Fas-associated death domain (FADD), and activated caspase-8, suggesting the involvement of the extrinsic apoptosis pathway. IcaS also increased the expression of Bax and BimL without affecting the expression status of Bcl-2 and Bid, suggesting that the apoptosis induced by IcaS was related to Bcl-2 family protein regulation. IcaS thus induced apoptosis in MCF7 cells involving both the intrinsic and extrinsic signaling pathways. Its potential as a candidate for an anti-cancer agent warrants further investigation.  相似文献   

12.
The anti-tumor effect of Icariside II (IcaS), a natural prenylated flavonol glycoside, was studied on human breast cancer MCF7 cells to unveil the underlying mechanisms involved. IcaS in MCF7 cells produced a loss of mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 revealed the involvement of the intrinsic apoptosis pathway. In contrast, IcaS enhanced the expression level of Fas and the Fas-associated death domain (FADD), and activated caspase-8, suggesting the involvement of the extrinsic apoptosis pathway. IcaS also increased the expression of Bax and BimL without affecting the expression status of Bcl-2 and Bid, suggesting that the apoptosis induced by IcaS was related to Bcl-2 family protein regulation. IcaS thus induced apoptosis in MCF7 cells involving both the intrinsic and extrinsic signaling pathways. Its potential as a candidate for an anti-cancer agent warrants further investigation.  相似文献   

13.
Apoptosis in mammalian cells is modulated by extrinsic and intrinsic signaling pathways through the formation of death receptor-mediated death-inducing signaling complex (DISC) and mitochondrial-derived apoptosome, respectively. We found by ultrastructural approaches that the antitumor drug edelfosine induced aggregates of lipid rafts containing Fas/CD95 receptor and Fas-associated death domain-containing protein in leukemic cells. Death receptors together with DISC and apoptosome constituents were recruited in rafts during edelfosine treatment in multiple myeloma cells. This apoptotic response involved caspases-8/-9/-10 that were translocated to rafts. Lipid raft disruption by cholesterol depletion inhibited loss of mitochondrial transmembrane potential, caspase activation and apoptosis, whereas cholesterol replenishment restored these responses. Our data indicate that rafts act as scaffolds where extrinsic and intrinsic apoptotic signaling pathways concentrate, forming clusters of apoptotic signaling molecule-enriched rafts (CASMER), which function as novel supramolecular entities in the triggering of apoptosis, and play an important role in edelfosine-induced apoptosis in blood cancer cells.  相似文献   

14.
15.
Li J  Xia X  Ke Y  Nie H  Smith MA  Zhu X 《Biochimica et biophysica acta》2007,1770(8):1169-1180
Trichosanthin (TCS), a traditional Chinese medicine, exerts antitumor activities by inducing apoptosis in many different tumor cell lines. However, the mechanisms remain obscure. The present study focused on various caspase pathways that may be involved in TCS-induced apoptosis in leukemia HL-60 cells. Key caspases in both intrinsic and extrinsic pathways including caspase-8, -9 and -3 were activated upon TCS treatment. Additionally, TCS treatment induced upregulation of BiP and CHOP and also activated caspase-4, which for the first time strongly supported the involvement of endoplasmic reticulum stress pathway in TCS-induced apoptosis. Interestingly, although caspase-8 was activated, Fas/Fas ligand pathway was not involved as evidenced by a lack of induction of Fas or Fas ligand and a lack of inhibitory effect of anti-Fas blocking antibody on TCS-induced apoptosis. Instead, caspase-8 was activated in a caspase-9 and -4 dependent manner. The involvement of mitochondria was demonstrated by the reduction of mitochondrial membrane potential and release of cytochrome c and Smac besides the activation of caspase-9. Further investigation confirmed that caspase-3 was the major executioner caspase downstream to caspase-9, -4 and -8. Taken together, our results suggested that TCS-induced apoptosis in HL-60 cells was mainly mediated by mitochondrial and ER stress signaling pathways via caspase-3.  相似文献   

16.
Delineation of the cell-extrinsic apoptosis pathway in the zebrafish   总被引:2,自引:0,他引:2  
The mammalian extrinsic apoptosis pathway is triggered by Fas ligand (FasL) and Apo2 ligand/tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL). Ligand binding to cognate receptors activates initiator caspases directly in a death-inducing signaling complex. In Drosophila, TNF ligand binding activates initiator caspases indirectly, through JNK. We characterized the extrinsic pathway in zebrafish to determine how it operates in a nonmammalian vertebrate. We identified homologs of FasL and Apo2L/TRAIL, their receptors, and other components of the cell death machinery. Studies with three Apo2L/TRAIL homologs demonstrated that they bind the receptors zHDR (previously linked to hematopoiesis) and ovarian TNFR (zOTR). Ectopic expression of these ligands during embryogenesis induced apoptosis in erythroblasts and notochord cells. Inhibition of zHDR, zOTR, the adaptor zFADD, or caspase-8-like proteases blocked ligand-induced apoptosis, as did antiapoptotic Bcl-2 family members. Thus, the extrinsic apoptosis pathway in zebrafish closely resembles its mammalian counterpart and cooperates with the intrinsic pathway to trigger tissue-specific apoptosis during embryogenesis in response to ectopic Apo2L/TRAIL expression.  相似文献   

17.
Fas-mediated apoptosis is a crucial cellular event. Fas, the Fas-associated death domain, and caspase 8 form the death-inducing signaling complex (DISC). Activated caspase 8 mediates the extrinsic pathways and cleaves cytosolic BID. Truncated BID (tBID) translocates to the mitochondria, facilitates the release of cytochrome c, and activates the intrinsic pathways. However, the mechanism causing these DISC components to aggregate and form the complex remains unclear. We found that Cav-1 regulated Fas signaling and mediated the communication between extrinsic and intrinsic pathways. Shortly after hyperoxia (4 h), the colocalization and interaction of Cav-1 and Fas increased, followed by Fas multimer and DISC formation. Deletion of Cav-1 (Cav-1-/-) disrupted DISC formation. Further, Cav-1 interacted with BID. Mutation of Cav-1 Y14 tyrosine to phenylalanine (Y14F) disrupted the hyperoxia-induced interaction between BID and Cav-1 and subsequently yielded a decreased level of tBID and resistance to hyperoxia-induced apoptosis. The reactive oxygen species (ROS) scavenger N-acetylcysteine decreased the Cav-1-Fas interaction. Deletion of glutathione peroxidase-2 using siRNA aggravated the BID-Cav-1 interaction and tBID formation. Taken together, these results indicate that Cav-1 regulates hyperoxia/ROS-induced apoptosis through interactions with Fas and BID, probably via Fas palmitoylation and Cav-1 Y14 phosphorylation, respectively.  相似文献   

18.
Matrix (M) protein mutants of vesicular stomatitis virus (VSV) are promising oncolytic agents for cancer therapy. Previous research has implicated Fas and PKR in apoptosis induced by other viruses. Here, we show that dominant-negative mutants of Fas and PKR inhibit M protein mutant virus-induced apoptosis. Most previous research has focused on the adapter protein FADD as a necessary transducer of Fas-mediated apoptosis. However, the expression of dominant-negative FADD had little effect on the induction of apoptosis by M protein mutant VSV. Instead, virus-induced apoptosis was inhibited by the expression of a dominant-negative mutant of the adapter protein Daxx. These data indicate that Daxx is more important than FADD for apoptosis induced by M protein mutant VSV. These results show that PKR- and Fas-mediated signaling play important roles in cell death during M protein mutant VSV infection and that Daxx has novel functions in the host response to virus infection by mediating virus-induced apoptosis.  相似文献   

19.
20.
Death-fold domains constitute an evolutionarily conserved superfamily that mediates apoptotic signaling. These motifs, including CARD (caspase recruitment domain), DD (death domain), and DED (death effector domain), are believed to exert their effects solely through homotypic interactions. Herein we demonstrate that the CARD-containing protein ARC engages in nontraditional death-fold interactions to suppress both extrinsic and intrinsic death pathways. The extrinsic pathway is disrupted by heterotypic interactions between ARC's CARD and the DDs of Fas and FADD, which inhibit Fas-FADD binding and assembly of the death-inducing signaling complex (DISC). The intrinsic pathway is antagonized by ARC-Bax binding, involving ARC's CARD and the Bax C terminus. This inhibits Bax activation and translocation to the mitochondria. Knockdown of endogenous ARC facilitates DISC assembly and triggers spontaneous Bax activation and apoptosis. Conversely, physiological levels of ARC suppress these events. These studies establish a critical role for nonhomotypic death-fold interactions in the regulation of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号