首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
有瓣蝇类分类、系统发育及演化   总被引:1,自引:0,他引:1  
闫利平  裴文娅  张东 《昆虫学报》2021,64(6):757-768
有瓣蝇类(Calyptratae)隶属于昆虫纲(Insecta)四大超适应辐射类群之一的双翅目(Diptera),占双翅目已知物种多样性的近20%。有瓣蝇类分布广泛,生物学习性极为多样,在维系生态系统稳定中发挥着重要作用,是媒介、法医、传粉和天敌昆虫学研究领域的热点类群,也是探究双翅目系统演化及其成功适应辐射的关键类群。为了还原有瓣蝇类的演化历史,许多著名昆虫学者先后对该类昆虫开展过不同层面的研究。有瓣蝇类的单系性得到了普遍支持,并被分为3个总科——虱蝇总科(Hippoboscoidea)、蝇总科(Muscoidea)和狂蝇总科(Oestroidea),其中单系的狂蝇总科与多系的蝇总科聚为一支,再与虱蝇总科成为姐妹群。在科级阶元水平,蝠蝇科(Streblidae)(虱蝇总科)、花蝇科(Anthomyiidae)(蝇总科)、丽蝇科(Calliphoridae)(狂蝇总科)、邻寄蝇科(Rhinophoridae)(狂蝇总科)等类群的单系性仍有待验证,且新的科仍在不断被建立[如粉蝇科(Polleniidae)、乌鲁鲁蝇科(Ulurumyiidae)],因此,有瓣蝇类科级系统发育关系仍不十分明晰。已有研究对虱蝇总科虱蝇科(Hippoboscidae)、蝠蝇科、蛛蝇科(Nycteribiidae),蝇总科蝇科(Muscidae)、粪蝇科(Scathophagidae),狂蝇总科麻蝇科(Sarcophagidae)、狂蝇科(Oestridae)胃蝇亚科(Gasterophilinae)的演化历史进行研究,明确了起源与扩散、寄主转移、取食策略等关键生物学习性的演化历史。但由于部分关键类群生活史信息的缺失,以及尚未有效解决的系统发育关系,有瓣蝇类演化历史仍有许多待解之谜。本文综述了有瓣蝇类分类、系统发育及演化研究进展,是在系统学研究进入系统发育基因组学时代后对该类群相关研究进展的首次全面总结。  相似文献   

2.
用中国产双翅目有瓣蝇类6科15种和GenBank中登录的5科6种有瓣蝇类昆虫的28SrDNA序列片段组合成7科21种,进行同源性比较。应用Mega3.0软件,探讨了28S rRNA基因在有瓣蝇类的分子进化机制;以黑腹果蝇Drosophilia melanogaster为外群,NJ和MP法构建了上述类群的分子系统树。研究结果表明:在获得的698bp的序列中,有126个变异位点,101个简约信息位点;A T含量平均为68.8%,存在较强的A T含量偏向性。分子系统树中,所有内群聚为一支,支持有瓣蝇类为一单系。内群分别聚为2大支:丽蝇科和麻蝇科关系较近于寄蝇科,组成较进化的狂蝇总科;蝇科与花蝇科聚合的类群为蝇总科,上述结果与现代形态分类系统相同。但粪蝇科和厕蝇科脱离蝇总科,与狂蝇总科聚为一支,与现代形态分类系统不一致。  相似文献   

3.
聂瑞娥  杨星科 《昆虫学报》2013,56(9):1055-1062
鞘翅目是世界上物种最丰富的类群, 分为原鞘亚目(Archostemata Kolbe, 1908)、 藻食亚目(Myxophaga Crowson, 1955)、 肉食亚目(Adephaga Schellenberg, 1806)和多食亚目(Polyphaga Emery, 1886)。随着分子生物学的发展,分子系统学的技术被广泛应用于鞘翅目系统学研究中。本文综述了鞘翅目高级阶元的分子系统学的研究进展及存在问题。基于分子生物学手段, 分子分类学家提出了关于鞘翅目高级阶元分子系统学很多假说, 分子分析结果支持鞘翅目的4个亚目各为单系, 而亚目间的系统关系还不统一。基于分子手段对于亚目内的系统发育关系的研究也有了一定的进展, 比如: 分子系统学结果支持肉食亚目的水生类群和陆生类群分别为单系, 水生类群为一次起源。目前, 鞘翅目高级阶元分子系统学的研究还不够成熟和完善, 主要表现为: 材料选择有限且不均衡、 基因数目和适合度不理想, 以及一些关键节点研究的欠缺。  相似文献   

4.
RNA二级结构比一级结构包含更多的信息, 在物种系统发育分析中更能反应真实情况。因而, 本研究对番石榴实蝇Bactrocera correcta和瓜实蝇B. cucurbitae的L-rRNA全基因进行了测序, 构建了双翅目L-rRNA基因二级结构的模式图, 并分析了其结构特征, 而后基于H45~H47茎环结构参数和结构序列及L-rRNA结构序列对双翅目13科的系统发育关系进行了初步分析。结果表明: 双翅目昆虫具有保守的L-rRNA二级结构; 不同结构区碱基组成和分布不均匀, Ⅳ区和Ⅴ区的完全保守碱基含量最高, GC含量最高, 绝大部分科Ⅵ区的AT斜率均小于0; 科内特有碱基和科间少数保守碱基大部分为G或C。瘿蚊科与双翅目其他科具有较远的系统发育关系, 而丽蝇科、 寄蝇科和食蚜蝇科有相近的系统发育关系; 虻科与网翅虻科同在一个小分支; 蠓科与蚊科同在一个大的系统发育分支。利用单方面参数不易得到理想的进化结果, 准确系统发育分析需要结合多方面的参数。  相似文献   

5.
直翅目昆虫分子系统学研究新进展   总被引:2,自引:0,他引:2  
对1994年以来国内外在直翅目昆虫种群遗传变异及进化、种及种下阶元的分类鉴定、种上阶元的系统发育分析及分子进化等分子系统学方面的研究进展进行了综述。近年来,蝗亚目昆虫分子系统学方面的研究成果较为丰富,而有关螽亚目的分子系统学研究较少。线粒体基因和核基因序列联合分析、整个基因组全序列分析以及分子数据与形态学的密切结合将是分子系统学未来发展的主要研究手段。  相似文献   

6.
线粒体Cyt b基因与昆虫分子系统学研究   总被引:6,自引:0,他引:6  
戴金霞 《四川动物》2005,24(2):222-225
细胞色素b(cytochrorrle b,Cyt b)是线粒体13个蛋白质编码基因中结构和功能被研究得最为清楚的基因之一,该基因的进化速度适中,适合研究种内到种间甚至科间的系统发育关系,研究内容涉及种及种下阶元的分类鉴定、种上阶元的系统发育分析、种群的遗传变异和进化研究、分子进化研究等方面,本文对Cyt b基因的分子特点及其在昆虫系统学研究中的应用进行综述。  相似文献   

7.
厕蝇科Fanniidae隶属于双翅目Diptera环裂亚目Cyclorrhapha,迄今全世界已知300余种。文章综述厕蝇科昆虫的世界研究简史,列出了200多年来厕蝇分类阶元、分类系统的组合、变动情况,总结该科属下分种团、系统发育、生物地理学研究及我国厕蝇的研究历程。在上述基础上,提出了目前所存在的问题。  相似文献   

8.
基于78种直翅目昆虫的18S rRNA基因全序列构建了直翅目各主要类群间的系统发育关系。本研究的结果支持直翅目的单系性,但不支持蝗亚目和螽亚目各自的单系性;直翅目下除蜢总科和蝗总科外各总科的划分多数与Otte系统相一致;蜢总科的单系性得不到支持;蝗总科的剑角蝗科、斑腿蝗科、斑翅蝗科、网翅蝗科和槌角蝗科5科均不是单系群,各物种间的遗传距离差异不大,应合并为一科,即蝗科;本研究支持将Otte系统中蚱总科和螽蟖总科下各亚科级阶元提升为科级阶元;18S rRNA基因全序列可以作为划分科级阶元的工具,当位于同一分支上互成姐妹群的类群间的遗传距离超过1%时,这几个类群属于不同的科;但由于其在进化上的保守性,18S rRNA基因只能用于纲目等高级阶元间关系的研究,而由其获得的总科以下阶元间的关系并不可靠。  相似文献   

9.
【目的】在全基因组水平鉴定亮斑扁角水虻Hemetia illucens脂肪酸去饱和酶(fatty acid deaturase,FAD)基因,分析其时空表达格局,研究代表性双翅目昆虫FAD家族基因的系统发育和进化关系。【方法】以FlyBase数据库中的黑腹果蝇Drosophila melanogaster FAD氨基酸序列作为种子序列,通过本地Blastp的方法在全基因组范围搜索和鉴定亮斑扁角水虻和其他代表性双翅目昆虫的FAD家族基因;采用MEGA7.0软件通过邻接法(neighbor-joining method,NJ)推断该家族基因在双翅目昆虫中的系统发育关系,并构建了双翅目代表性昆虫FAD家族的系统发育进化树;基于亮斑扁角水虻转录组数据分析亮斑扁角水虻FAD基因在其代表性组织和生长发育时期中的表达格局并且利用RT-PCR进一步验证。【结果】本研究在亮斑扁角水虻全基因组中共鉴定到13个FAD基因,并预测了这些基因的部分特征。系统发育分析结果表明,编码亮斑扁角水虻FAD家族的基因某些成员发生了基因复制事件,例如Hill FAD-10和Hill FAD-12以及Hill FAD-9和Hill FAD-11基因;与此相反的是,亮斑扁角水虻某些FAD基因在双翅目昆虫中呈现出相似的进化模式,例如Hill FAD-5和Hill FAD-6基因,说明这些基因在双翅目昆虫进化中相对比较保守并且可能发挥重要作用。转录组数据分析及RT-PCR结果显示,亮斑扁角水虻FAD家族基因在其变态发育期间呈现不同的表达模式,其中,Hill FAD-2和Hill FAD-6在胚胎期、幼虫前期、蛹期和成虫期均有表达,Hill FAD-3主要集中于胚胎后期至4龄幼虫期间表达;与此相反,Hill FAD-4在整个发育阶段均呈现出低表达状态,说明FAD家族基因可能在亮斑扁角水虻变态发育过程中发挥不同作用。【结论】本研究结果不仅在全基因组范围鉴定了亮斑扁角水虻脂肪酸去饱和酶基因,而且预测了FAD基因家族在双翅目中的进化格局,有助于更好地了解FAD基因在物种生态适应性中发挥的作用;同时,我们鉴定的FAD基因在亮斑扁角水虻中的表达格局也提示了FAD基因在亮斑扁角水虻脂肪代谢过程中发挥重要作用。  相似文献   

10.
关于停止使用"同翅目Homoptera" 目名的建议   总被引:32,自引:19,他引:13  
梁爱萍 《昆虫知识》2005,42(3):332-337
长期以来,在我国昆虫学界,“同翅目Homoptera”和半翅目Hemiptera一直被作为2个并列的昆虫目被广泛使用。传统的“同翅目”被分为3亚目10总科,即鞘喙亚目Coleorrhyncha(包括膜翅蝽总科Peloridioidea)、胸喙亚目Stemorrhyncha(包括木虱总科Psylloidea、粉虱总科Aleyrodoidea、蚧总科Coccoidea和蚜总科Aphidoidea)和头喙亚目Auchenorrhyncha[包括蜡蝉子亚目Fulgoromorpha(包括蜡蝉总科Fulgoroidea)和蝉子亚目Cicadomorpha(包括蝉总科Cicadoidea、沫蝉总科Cercopoidea、叶蝉总科Cicadelloidea和角蝉总科Membracoidea)]。近年来,形态学及分子学特征数据的支序分析研究表明,木虱总科、粉虱总科、蚧总科、蚜总科、蜡蝉总科、蝉总科、沫蝉总科、角蝉总科都是单系群;鞘喙亚目、胸喙亚目、蝉子亚目及蜡蝉子亚目也都是单系群,其相互之间的系统发育关系为:胸喙亚目 (蝉子亚目 (蜡蝉子亚目 (鞘喙亚目 异翅亚目(蝽类)))),它们共同组成了单系的半翅目Hemiptera。系统发育分析表明,在半翅目中,鞘喙亚目与异翅亚目具有最近的亲缘关系,蜡蝉子亚目与鞘喙亚目 异翅亚目是姊妹群,蝉子亚目是蜡蝉子亚目 (鞘喙亚目 异翅亚目)的姐妹群,胸喙亚目是半翅目中最早和最原始的一个分枝。因此传统的“同翅目”并不是一个自然的单系类群,而是一个人为的并系类群。目前,在国际昆虫学界,“同翅目”作为一个人为的并系类群已得到公认和普遍接受,并已不再作为昆虫纲的一个有效目被使用。然而,“同翅目”作为昆虫纲的一个有效目在国内一直被广泛使用,为此,作者建议我国的昆虫学工作者今后应停止使用“同翅目”这一人为的并系目名而使用单系的半翅目目名,即将长期以来一直置于“同翅目”的木虱、粉虱、蚧虫、蚜虫、蝉、沫蝉、叶蝉、角蝉及蜡蝉类昆虫与蝽类昆虫一起作为半翅目的成员对待。  相似文献   

11.
Members of the megadiverse insect order Diptera (flies) have successfully colonized all continents and nearly all habitats. There are more than 154 000 described fly species, representing 10–12% of animal species. Elucidating the phylogenetic relationships of such a large component of global biodiversity is challenging, but significant advances have been made in the last few decades. Since Hennig first discussed the monophyly of major groupings, Diptera has attracted much study, but most researchers have used non‐numerical qualitative methods to assess morphological data. More recently, quantitative phylogenetic methods have been used on both morphological and molecular data. All previous quantitative morphological studies addressed narrower phylogenetic problems, often below the suborder or infraorder level. Here we present the first numerical analysis of phylogenetic relationships of the entire order using a comprehensive morphological character matrix. We scored 371 external and internal morphological characters from larvae, pupae and adults for 42 species, representing all infraorders selected from 42 families. Almost all characters were obtained from previous studies but required revision for this ordinal‐level study, with homology assessed beyond their original formulation and across all infraorders. We found significant support for many major clades (including the Diptera, Culicomorpha, Bibionomorpha, Brachycera, Eremoneura, Cyclorrhapha, Schizophora, Calyptratae and Oestroidea) and we summarize the character evidence for these groups. We found low levels of support for relationships between the infraorders of lower Diptera, lower Brachycera and major lineages of lower Cyclorrhapha, and this is consistent with findings from molecular studies. These poorly supported areas of the tree may be due to periods of rapid radiation that left few synapomorphies in surviving lineages.  相似文献   

12.
Abstract Relationships among families of the lower Diptera (formerly suborder ‘Nematocera’) have been exceptionally difficult to resolve. Multiple hypotheses based on morphology have been proposed to identify the earliest lineages of flies and place the phylogenetic origin of the higher flies (Brachycera), but convincing support is limited. Here we resolve relationships among the major groups of lower Diptera using sequence data from four nuclear markers, including both ribosomal (28S rDNA) and protein‐coding (CAD, TPI and PGD) genes. Our results support both novel and traditional arrangements. Most unexpectedly, the small, highly‐specialized family Deuterophlebiidae appears to be sister to all remaining Diptera. Other results include the resolution of the traditional infra‐orders Culicomorpha (including a novel superfamily Simulioidea = Thaumaleidae + Simuliidae), Tipulomorpha (Tipulidae sensu lato + Trichoceridae) and Bibionomorpha sensu lato. We find support for a limited Psychodomorpha (Blephariceridae, Tanyderidae and Psychodidae) and Ptychopteromorpha (Ptychopteridae), whereas the placement of several enigmatic families (Nymphomyiidae, Axymyiidae and Perissommatidae) remains ambiguous. According to genetic data, the infra‐order Bibionomorpha is sister to the Brachycera. Much of the phylogenetic signal for major lineages was found in the 28S rDNA gene, whereas protein‐coding genes performed variably at different levels. In addition to elucidating relationships, we also estimate the age of major lower dipteran clades, based on molecular divergence time estimates using relaxed‐clock Bayesian methods and fossil calibration points.  相似文献   

13.
The relationships of the nematocerous families of Diptera are cladistieally analysed using the parsimony programs PAUP and Hennig86. An extensive review, as well as a data matrix, is presented for 98 almost exclusively morphological characters (larva, 56; pupa, 6; adult, 36). Four infraorders are recognized, viz , Ptychopteromorpha, Culicomorpha, Blephariceromorpha, Bibionomorpha, and a clade containing the 'higher Nematocera' and Brachycera. Traditionally the family Nymphomyiidae or the infraorder Tipulomorpha (=Tipulidae, with or without Trichoceridae) are considered the most basal clade of the extant Diptera. On the basis of our cladistic analysis it is suggested that the Ptychopteromorpha-Culicomorpha clade is the sister-group of all other extant Diptera. We provide evidence that the Axymyiidae are part of a monophyletic Bibionomorpha. The latter infraorder is proposed as the sister-group of the higher Nematocera and Brachycera. We transfer the Tipulidae (Tipulomorpha) to the higher Nematocera, at a position next to Trichoceridae and near the Anisopodidae-Brachycera lineage. Previous hypotheses concerning nematocerous relationships are reviewed.  相似文献   

14.
In developing insect eggs the cells of the blastoderm adopt either an embryonic or an extraembryonic fate. The extraembryonic tissue consists of epithelia, termed amnion and serosa, which wrap the germ band embryo. The serosa develops directly from part of the blastoderm and surrounds the embryo as well as the yolk. The amnion develops from the margins of the germ band and in most insect species generates a transient ventral cavity for the developing embryo. The amniotic cavity and the serosa have been reduced in the course of dipteran evolution. The insect order of Diptera includes the paraphyletic Nematocera, including gnats and mosquitoes, and the more derived monophyletic Brachycera, the true flies. Nematocera develop within an amniotic cavity and the surrounding serosa, whereas cyclorrhaphan Brachycera do not. This observation implies that the amnion and serosa have been reduced before the radiation of the monophyletic cyclorrhaphan flies. Here I show that an amniotic cavity is formed during embryogenesis of the horsefly Haematopota pluvialis (Tabanidae) and the dancefly Empis livida (Empididae). The results suggest that extraembryonic tissue was reduced in the stem lineage of cyclorrhaphan flies, with consequences for the molecular basis of pattern formation along the anterior-posterior axis of the embryo. Received: 21 October 1999 / Accepted: 17 January 2000  相似文献   

15.
The Stichotrichia, known as an especially various and taxonomically difficult group, were intensely studied with morphological, morphogenetic, and molecular methods in the last years. Nevertheless, a consistent classification is lacking and several important questions about the phylogenetic relationships within this group remain unsolved. In order to gain deeper insights into these relationships, the nuclear small subunit rRNA genes of seven species of the Stichotrichia, representatives of the families Oxytrichidae, Amphisiellidae, and Pseudourostylidae, were phylogenetically analysed. Although our analyses resulted in a poor resolution of the phylogenetic relationships, some conclusions can be drawn. Firstly, following the current classification systems the Oxytrichidae as well as their subfamilies seem to be paraphyletic and the basic 18 FVT cirral pattern has been modified several times independently. Secondly, sequence analyses of several Oxytricha species resulted in a high molecular diversity, which does not support monophyly of this genus. Thirdly, several families of the order Urostylida (Urostylidae, Pseudokeronopsidae, and Pseudourostylidae) also do not form monophyletic groups.  相似文献   

16.
Several members of the dipteran family Tephritdae are serious pests because females lay eggs in ripening fruit. The genus Bactrocera is one of the largest within the family with over 500 described species arranged in 28 subgenera. The phylogenetic relationships among the various species and subgenera, and the monophyly of specific groups have not been examined using a rigorous phylogenetic analysis. Therefore, phylogenetic relationships among 24 Bactrocera species belonging to 9 subgenera were inferred from DNA sequence of portions of the mitochondrial 16S rRNA, cytochrome oxidase II, tRNA(Lys), and tRNA(Asp) genes. Two morphological characters that traditionally have been used to define the four groups within the subgenus Bactrocera were evaluated in a phylogenetic context by mapping the character states onto the parsimony tree. In addition, the evolutionary trend in male-lure response was evaluated in a phylogenetic context. Maximum parsimony analyses suggested the following relationships: (1) the genus Bactrocera is monophyletic, (2) the subgenus B. (Zeugodacus) is paraphyletic, (3) the subgenus B. (Daculus) is a sister group to subgenus B. (Bactrocera), and (4) the subgenus B. (Bactrocera) is monophyletic. The mapping analyses suggested that the morphological characters exhibit a simple evolutionary transition from one character state to another. Male-lure response was identified as being a labile behavior that has been lost on multiple occasions. Cue-lure response was plesiomorphic to methyl-eugenol response, and the latter has evolved independently within the Bactrocera and Zeugodacus groups of subgenera. The implications of our results for devising a coherent, consolidated classification for Bactrocera is discussed.  相似文献   

17.
The phylogenetic relationships and evolutionary processes within the subfamily Pontoniinae, a speciose group of shrimps with diverse lifestyles (free living, semi‐symbiotic and symbiotic) inhabiting the coral reefs of tropical oceans, are an interesting and undeveloped subject of study. In this work, two mitochondrial ribosomal genes (12S rRNA and 16S rRNA) and two protein‐coding nuclear genes (Histone 3 and the sodium–potassium ATPase α‐subunit) were employed to reconstruct the phylogenetic relationships of 42 genera and 101 species within Pontoniinae. Compared to previous studies, ten additional genera were shown to be monophyletic groups, and the genera Dactylonia and Periclimenaeus were shown to be paraphyletic. The shallow‐water crinoid‐associated pontoniines were divided into several groups which were mostly consistent with the morphological analysis. The studied bivalve‐associated taxa exhibited ancestries that were traceable to different lineages, and two groups could be distinguished: Anchiopontonia + Conchodytes and Anchistus. The similar situation occurred in other echinoderm‐associated pontoniines. These results suggest that pontoniines sharing the same hosts may have different evolutionary origins resulting from multiple intrusions of their hosts by morphologically plastic ancestral groups.  相似文献   

18.
The frog family Bufonidae is a large group distributed throughout all major land masses of die world except the polar regions. Although the monophyly of Bufonidae is strongly supported, phylogenetic relationships within the group are not well understood. Because of apparently large differences in rates of morphological and behavioral evolution, speciation, and geographical range, Bufonidae raises intriguing macroevolutionary questions. For example, one might imagine that the group's evolutionary history is congruent (1) with its morphological and behavioral character distribution, or (2) with its current geographical positioning. To examine phylogenetic relationships within Bufonidae and test these alternate hypotheses, DNA sequence data were obtained from four genes, three mitochondrial and one nuclear, from populations throughout the geographic and taxonomic breadth of the family. Phylogenetic analyses of these sequences by several methods support several hypotheses of relationships, notably: (1) contrary to the previous hypotheses of some workers, Bufo is not the basal, wildly paraphyletic genus of Bufonidae, although it is also not monophyletic, (2) the basal splits within bufonids separate South American 'atelopodid'genera from all other bufonids, although the monophyly of the 'atelopodids' is not supported, and (3) the most highly supported clades within the family generally correspond to small- to medium-sized, geographically and morphologically homogeneous groups. These trees are used to test the two alternate macroevolutionary hypotheses, and, while neither hypothesis fully explains the observed phylogenetic relationships, these relationships are broadly consistent with both character distribution and geography at particular levels.  相似文献   

19.
Ampullariids are widespread in Africa, Asia, South- and Central America, and the Caribbean Islands. Basal phylogenetic relationships of the African genera Afropomus and Saulea have been inferred based on anatomical evidence. Until recently the Viviparidae was regarded as the sister-group of Ampullariidae, but recent molecular data infer a sister-group relationship with Campanilidae. We have used members of both families as outgroups in the present investigation on ampullariid phylogeny. We have used data from portions of five molecular loci, that is, the nuclear genes 18S rRNA, 28S rRNA and H3, and the mitochondrial genes 16S rRNA and COI. Our data most often infer a basal position of Afropomus . The West African species Saulea is inferred as the basal member of a clade including the South American Marisa and Pomacea . We hypothesize that evolutionary lineages leading to Saulea and the American genera were isolated from each other by vicariance events (Gondwanaland break-up 130–110 Mya). Our individual gene analyses inferred two major clades of the African Lanistes . However, in some analyses they were not inferred as sister-groups making Lanistes paraphyletic. The African and Asian genus Pila is most often inferred to be monophyletic (except for the generally unresolved 28S). Our analyses most often inferred a sister-group relationship between Lanistes and Pila . The very low genetic diversity of the endemic radiation of Lanistes in Lake Malawi suggests that the morphological divergence has happened much faster than the molecular divergence as is also evidenced from the cichlid radiations.  相似文献   

20.
A Molecular Phylogeny of Costaceae (Zingiberales)   总被引:1,自引:0,他引:1  
The phylogenetic relationships of Costaceae, a tropical monocotyledonous family sister to the gingers (Zingiberaceae), were investigated with a combination of two chloroplast loci (the trnL-F locus, including the trnL intron, the 3'trnL exon, and the trnL-F intergenic spacer, and the trnK locus, including the trnK intron and the matK coding region) and one nuclear locus (ITS1-5.8s-ITS2). The resulting parsimony analysis of selected taxa that demonstrate the range of floral morphological variation in the family shows that the Cadalvena-type [corrected] floral morphology is ancestral to the group and that both Tapeinochilos species and a Monocostus + Dimerocostus clade represent recent divergences. The genus Costus is broadly paraphyletic but Costus subgenus Eucostus K. Schum. represents a large monophyletic radiation that is poorly resolved. Within this clade, secondary analyses suggest that pollination syndrome, traditionally used for taxonomic and classification purposes within the genus Costus, is a relatively plastic trait of limited phylogenetic utility. This represents the first detailed investigation into intrageneric and interspecific evolutionary relationships within the family Costaceae and presents some novel evolutionary trends with respect to floral morphology and biogeography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号