首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The terrestrial plant Borszczowia aralocaspica (Chenopodiaceae) has recently been shown to contain the entire C(4) photosynthesis mechanism within individual, structurally and biochemically polarized chlorenchyma cells rather than in a dual cell system, as has been the paradigm for this type of carbon fixation (Nature 414: 543-546, 2001). Analysis of carbon isotope composition and (14)CO(2) fixation shows that photosynthesis and growth of B. aralocaspica occurs through carbon acquired by C(4) photosynthesis. The development of this unique single-cell C(4) system in chlorenchyma cells was studied by analysis of young (0.2-0.3 cm length), intermediate (ca. 0.5-0.6 cm length), and mature leaves (ca. 3 cm length). The length of chlorenchyma cells approximately doubles from young to intermediate and again from intermediate to the mature leaf stage. In young chlorenchyma cells, there is a single type of chloroplast; the chloroplasts are evenly distributed throughout the cytosol, and all contain starch and rubisco. During leaf development, the activities of phosphoenolpyruvate carboxylase (PEPC; which is cytosolic), rubisco, and pyruvate,Pi dikinase (PPDK) increase on a chlorophyll basis. As leaves mature, chloroplasts differentiate into two distinct structural and biochemical types that are spatially separated into the proximal and distal parts of the cell (the proximal end being closest to the center of the leaf). The early stages of this polarization are observed in intermediate leaves, and the polarization is fully developed in mature leaves. The chloroplasts in the distal ends of the cell have reduced grana and little starch, while those at the proximal ends have well-developed grana and abundant starch. In mature leaves, PPDK is expressed in chloroplasts at the distal end of the cells, while rubisco and adenosine diphosphate glucose (ADPG) pyrophosphorylase are selectively expressed in chloroplasts at the proximal end of the cell. Mitochondrial polarization also occurs during development as nicotinamide-adenine dinucleotide phosphate-malic enzyme (NAD-ME) and the photorespiratory enzyme glycine decarboxylase are expressed in mature but not young leaves and are localized in mitochondria at the proximal end of the cells. The data show that single-cell C(4) develops from a single pool of identical organelles that develop differential biochemical functions and spatial partitioning in the cell during maturation.  相似文献   

2.
The terrestrial plant Bienertia cycloptera has been shown to accomplish C(4) photosynthesis within individual chlorenchyma cells by spatially separating the phases of carbon assimilation into distinct peripheral and central compartments. In this study, anatomical, physiological, and biochemical techniques were used to determine how this unique compartmentation develops. Western blots show ribulose-1,5-bisphosphate carboxylase (Rubisco) (chloroplastic) is present in the youngest leaves and increases during development, while levels of C(4) enzymes-pyruvate,Pi dikinase (chloroplastic), phosphoenolpyruvate carboxylase (PEPC) (cytosol), and NAD-malic enzyme (mitochondrial)-increase later in development. Immunolocalization confirmed this for Rubisco and PEPC. The youngest chlorenchyma cells have a central nucleus surrounded by monomorphic granal chloroplasts containing Rubisco. Later stages show progressive development of a central cytoplasmic compartment enriched with chloroplasts and mitochondria and of a peripheral cytoplasm with chloroplasts. A complex reticulum of connections between the compartments also developed and was characterized. δ(13)C isotope analyses show mature leaves have distinct C(4)-type isotope composition, while the composition in younger leaves is "C(4)-like." Based on the results, this form of single-cell C(4) photosynthesis develops from a common pool of organelles through partitioning to separate compartments, and the development of biochemically and ultrastructurally dimorphic chloroplasts.  相似文献   

3.
4.
Kranz anatomy, with its separation of elements of the C4 pathway between two cells, has been an accepted criterion for function of C4 photosynthesis in terrestrial plants. However, Bienertia cycloptera (Chenopodiaceae), which grows in salty depressions of Central Asian semi-deserts, has unusual chlorenchyma, lacks Kranz anatomy, but has photosynthetic features of C4 plants. Its photosynthetic response to varying CO2 and O2 is typical of C4 plants having Kranz anatomy. Lack of night-time CO2 fixation indicates it is not acquiring carbon by Crassulacean acid metabolism. This species exhibits an independent, novel solution to function of the C4 mechanism through spatial compartmentation of dimorphic chloroplasts, other organelles and photosynthetic enzymes in distinct positions within a single chlorenchyma cell. The chlorenchyma cells have a large, spherical central cytoplasmic compartment interconnected by cytoplasmic channels through the vacuole to the peripheral cytoplasm. This compartment is filled with mitochondria and granal chloroplasts, while the peripheral cytoplasm apparently lacks mitochondria and has grana-deficient chloroplasts. Immunolocalization studies show enzymes compartmentalized selectively in the CC compartment, including Rubisco in chloroplasts, and NAD-malic enzyme and glycine decarboxylase in mitochondria, whereas pyruvate, Pi dikinase of the C4 cycle is localized selectively in peripheral chloroplasts. Phosphoenolpyruvate carboxylase, a cytosolic C4 cycle enzyme, is enriched in the peripheral cytoplasm. Our results show Bienertia utilizes strict compartmentation of organelles and enzymes within a single cell to effectively mimic the spatial separation of Kranz anatomy, allowing it to function as a C4 plant having suppressed photorespiration; this raises interesting questions about evolution of C4 mechanisms.  相似文献   

5.
Structurally similar proplastids occur in the shoot, scutellum, and root of the oat embryo at the start of germination. These proplastids follow several pathways of differentiation, depending on their location within an organ and on previous exposure to light. During the first 24 hr of germination morphologically similar amyloplasts are formed from the preexisting proplastids in most of the cells of the seedling. After about 24 hr in the light, unique chloroplasts begin to develop in a subepidermal ring of small cortical parenchyma cells in the coleoptile and give the organ a pale green color. At 48 and 72 hr the coleoptile chloroplasts and etioplasts are conspicuously different from the corresponding leaf plastids in morphology and ontogeny but contain typical photosynthetic grana and prolamellar bodies. Study of the ontogeny of plastids in the epidermal and nongreening parenchymal regions of dark grown coleoptiles shows that these plastids undergo significant losses in starch content, and some increase of membranes within the plastid, related to the age of the cell. Light has little effect on the structure of these plastids. It is suggested that the ontogeny of all the plastid types of the oat seedling begins with a common precursor—a relatively simple proplastid that is present at the time of germination. Starch grains showing two distinct types of erosion, apparently enzymatic, were observed in oat coleoptile plastids. In one type (grooved appearance) the starch grains are consistently associated with plastid membranes, while in the other type (irregular, spiny appearance) the starch grains are associated with the plastid stroma only. We suggest that there are two enzyme systems for metabolizing starch in oat plastids—one membrane-bound and the other free in the stroma.  相似文献   

6.
C (4) species of family Chenopodiaceae, subfamily Suaedoideae have two types of Kranz anatomy in genus Suaeda, sections Salsina and Schoberia, both of which have an outer (palisade mesophyll) and an inner (Kranz) layer of chlorenchyma cells in usually semi-terete leaves. Features of Salsina (S. AEGYPTIACA, S. arcuata, S. taxifolia) and Schoberia type (S. acuminata, S. Eltonica, S. cochlearifoliA) were compared to C (3) type S. Heterophylla. In Salsina type, two layers of chlorenchyma at the leaf periphery surround water-storage tissue in which the vascular bundles are embedded. In leaves of the Schoberia type, enlarged water-storage hypodermal cells surround two layers of chlorenchyma tissue, with the latter surrounding the vascular bundles. The chloroplasts in Kranz cells are located in the centripetal position in Salsina type and in the centrifugal position in the Schoberia type. Western blots on C (4) acid decarboxylases show that both Kranz forms are NAD-malic enzyme (NAD-ME) type C (4) species. Transmission electron microscopy shows that mesophyll cells have chloroplasts with reduced grana, while Kranz cells have chloroplasts with well-developed grana and large, specialized mitochondria, characteristic of NAD-ME type C (4) chenopods. In both C (4) types, phosphoenolpyruvate carboxylase is localized in the palisade mesophyll, and Rubisco and mitochondrial NAD-ME are localized in Kranz cells, where starch is mainly stored. The C (3) species S. heterophylla has Brezia type isolateral leaf structure, with several layers of Rubisco-containing chlorenchyma. Photosynthetic response curves to varying CO (2) and light in the Schoberia Type and Salsina type species were similar, and typical of C (4) plants. The results indicate that two structural forms of Kranz anatomy evolved in parallel in species of subfamily Suaedoideae having NAD-ME type C (4) photosynthesis.  相似文献   

7.
Pyruvate, Pi dikinase in extracts of chloroplasts from mesophyll cells of Zea mays is inactivated by incubation with ADP plus ATP. This inactivation was associated with phosphorylation of a threonine residue on a 100 kDa polypeptide, the major polypeptide of the mesophyll chloroplast stroma, which was identified as the subunit of pyruvate, Pi dikinase. The phosphate originated from the beta-position of ADP as indicated by the labelling of the enzyme during inactivation in the presence of [beta-32P]ADP. During inactivation of the enzyme up to 1 mole of phosphate was incorporated per mole of pyruvate, Pi dikinase subunit inactivated. 32P label was lost from the protein during the Pi-dependent reactivation of pyruvate, Pi dikinase.  相似文献   

8.
The development of the dimorphic chloroplasts of Zea mays L. in adult foliage leaves is described, and a method of correlating ultrastructural stages by means of leaf chlorophyll is presented. In addition, the developmental changes in chlorophyll a/b ratio are discussed. Both the mesophyll and the bundle sheath plastids contain small grana at the earliest stages of plastid development. As the plastids enlarge, the mesophyll grana stacks increase in both length of the appressed membrane and in the number of thylakoids per granum. Initially, the grana stacks in the bundle sheath plastids also enlarge, but as the plastids approach full size, most of the membrane appression is lost. However, the remaining areas of appression in the bundle sheath plastids show an increase in the number of thylakoids in each small granum.  相似文献   

9.
The vascular bundle sheath cells of sugar cane contain starch-storing chloroplasts lacking grana, whereas the adjacent mesophyll cells contain chloroplasts which store very little starch and possess abundant grana. This study was undertaken to determine the ontogeny of these dimorphic chloroplasts. Proplastids in the two cell types in the meristematic region of light-grown leaves cannot be distinguished morphologically. Bundle sheath cell chloroplasts in tissue with 50% of its future chlorophyll possess grana consisting of 2-8 thylakoids/granum. Mesophyll cell chloroplasts of the same age have better developed grana and large, well structured prolamellar bodies. A few grana are still present in bundle sheath cell chloroplasts when the leaf tissue has 75% of its eventual chlorophyll, and prolamellar bodies are also found in mesophyll cell chloroplasts at this stage. The two cell layers in mature dark-grown leaves contain morphologically distinct etio-plasts. The response of these two plastids to light treatment also differs. Plastids in tissue treated with light for short periods exhibit protrusions resembling mitochondria. Plastids in bundle sheath cells of dark-grown leaves do not go through a grana-forming stage. It is concluded that the structure of the specialized chloroplasts in bundle sheath cells of sugar cane is a result of reduction, and that the development of chloroplast dimorphism is related in some way to leaf cell differentiation.  相似文献   

10.
Certain members of the family Chenopodiaceae are the dominant species of the deserts of Central Asia; many of them are succulent halophytes which exhibit C4-type CO2 fixation of the NAD- or NADP-ME (malic enzyme) subgroup. In four C4 species of the tribe Salsoleae, the Salsoloid-type Kranz anatomy in leaves or stems was studied in relation to the diversity in anatomy which was found in cotyledons. Halocharis gossypina, has C4 NAD-ME Salsoloid-type photosynthesis in leaves and C3 photosynthesis in dorsoventral non-Kranz cotyledons; Salsola laricina has C4 NAD-ME Salsoloid-type leaves and C4 NAD-ME Atriplicoid-type cotyledons; Haloxylon persicum, has C4 NADP-ME Salsoloid-type green stems and C3 isopalisade non-Kranz cotyledons; and S. richteri has C4 NADP-ME Salsoloid-type leaves and cotyledons. Immunolocalization studies on Rubisco showed strong labelling in bundle sheath cells of leaves and cotyledons of organs having Kranz anatomy. The C4 pathway enzyme phosphoenolpyruvate carboxylase was localized in mesophyll cells, while the malic enzymes were localized in bundle sheath cells of Kranz-type tissue. Immunolocalization by electron microscopy showed NAD-ME is in mitochondria while NADP-ME is in chloroplasts of bundle sheath cells in the respective C4 types. In some C4 organs, it was apparent that subepidermal cells and water storage cells also contain some chloroplasts which have Rubisco, store starch, and thus perform C3 photosynthesis. In non-Kranz cotyledons of Halocharis gossypina and Haloxylon persicum, Rubisco was found in chloroplasts of both palisade and spongy mesophyll cells with the heaviest labelling in the layers of palisade cells, whereas C4 pathway proteins were low or undetectable. The pattern of starch accumulation correlated with the localization of Rubisco, being highest in the bundle sheath cells and lowest in the mesophyll cells of organs having Kranz anatomy. In NAD-ME-type Kranz organs (leaves and cotyledons of S. laricina and leaves of H. gossypina the granal index (length of appressed membranes as a percentage of total length of all membranes) of bundle sheath chloroplasts is 1.5 to 2.5 times higher than that of mesophyll chloroplasts. In contrast, in the NADP-ME-type Kranz organs (S. richteri leaves and cotyledons and H. persicum stems) the granal index of mesophyll chloroplasts is 1.5 to 2.2 times that of the bundle sheath chloroplasts. The mechanism of photosynthesis in these species is discussed in relation to structural differences.  相似文献   

11.
Cells of Streptanthus tortuosus callus tissue contain chloroplasts when cultured in a liquid medium in the light. Similar cells grown in the dark contain proplastids that fail to develop prolamellar bodies but do contain a complex of loosely-associated membranes. When green, light-grown cultures are cut into small pieces and subcultured to a fresh culture medium, they become bleached even though maintained under the same illumination. The fine structure of the chloroplasts and the chlorophyll content of the cells indicate a dedifferentiation of the chloroplasts to a proplastid state during the early culture period. The changes in the ultrastructure of the plastids are paralleled by a dedifferentiation of the vacuolate cells to a less differentiated, meristematic state. Subsequent growth in the light results in a re-formation of chloroplasts and an increase in the chlorophyll content of the cells. The period of chloroplast redevelopment is associated with the re-formation of large central vacuoles in the cultured cells. Invaginations of the inner membrane of the plastid envelope occur at all stages of plastid development and are not lost during the period of grana degeneration. The proplastids formed from the dedifferentiation of the chloroplasts contain a large number of these invaginations and the redevelopment of grana is associated with a change in the electron density of the invaginating membranes. The degradation of the chlorophyll-containing membranes of the grana occurs during a period of rapid cytoplasmic synthesis induced by the fresh supply of nutrients in the culture medium. These results suggest that the high levels of nutrients may act directly on the chloroplasts and cause their dedifferentiation or that the rapid cell growth induced by the nutrients may cause a degradation of the membrane proteins in the grana of the chloroplasts and an incorporation of the released amino acids into non-plastid components of the cytoplasm.  相似文献   

12.
Pyruvate,Pi dikinase regulatory protein (PDRP) has been highly purified from maize leaves, and its role in catalyzing both ADP-mediated inactivation (due to phosphorylation of a threonine residue) and Pi-mediated activation (due to dephosphorylation by phosphorolysis) of pyruvate,Pi dikinase has been confirmed. These reactions account for the dark/light-mediated regulation of pyruvate,Pi dikinase observed in the leaves of C4 plants. During purification to apparent homogeneity the ratio of these two activities remained constant. The molecular weight of the native PDRP was about 180,000 at pH 8.3 and 90,000 at pH 7.5. Its monomeric molecular weight was 45,000. It was confirmed that inactive pyruvate,Pi dikinase free of a phosphate group on a catalytic histidine was the preferred substrate for activation. Michaelis constants for orthophosphate and the above form of active pyruvate,Pi dikinase were determined, as well as the mechanism of inhibition of the PDRP-catalyzed reaction by ATP, ADP, AMP, and PPi. For the inactivation reaction, Km values were 1.2 microM for the active pyruvate,Pi dikinase and 52 microM for ADP. CDP and GDP but not UDP could substitute for ADP. The inactivation reaction is inhibited by inactive pyruvate,Pi dikinase competitively with respect to both active pyruvate,Pi dikinase and ADP. Both the activation and inactivation reactions catalyzed by PDRP have a broad pH optimum between 7.8 and 8.3. The results are discussed in terms of the likely mechanism of dark/light regulation of pyruvate,Pi dikinase in vivo.  相似文献   

13.
Blepharis (Acanthaceae) is an Afroasiatic genus comprising 129 species which occur in arid and semi-arid habitats. This is the only genus in the family which is reported to have some C(4) species. Blepharis ciliaris (L.) B. L. Burtt. is a semi-desert species with distribution in Iran, Oman, and Pakistan. Its form of photosynthesis was investigated by studying different organs. C(4)-type carbon isotope composition, the presence of atriplicoid type Kranz anatomy, and compartmentation of starch all indicate performance of C(4) photosynthesis in cotyledons, leaves, and the lamina part of bracts. A continuous layer of distinctive bundle sheath cells (Kranz cells) encircle the vascular bundles in cotyledons and the lateral vascular bundles in leaves. In older leaves, there is extensive development of ground tissue in the midrib and the Kranz tissue becomes interrupted on the abaxial side, and then becomes completely absent in the mature leaf base. Cotyledons have 5-6 layers, and leaves 2-3 layers, of spongy chlorenchyma beneath the veins near the adaxial side of the leaf, indicating bifacial organization of chlorenchyma. As the plant matures, bracts and spines develop and contribute to carbon assimilation through an unusual arrangement of Kranz anatomy which depends on morphology and exposure to light. Stems do not contribute to carbon assimilation, as they lack chlorenchyma tissue and Kranz anatomy. Analysis of C(4) acid decarboxylases by western blot indicates B. ciliaris is an NAD-malic enzyme type C(4) species, which is consistent with the Kranz cells having chloroplasts with well-developed grana and abundant mitochondria.  相似文献   

14.
油菜叶片及其脱分化和再分化中质体的电镜观察   总被引:1,自引:0,他引:1  
我们用电镜观察了油菜叶片植株再生中质体的超微结构变化。在油菜叶肉细胞中,叶绿体的基粒,基质片层发育良好,偶尔有淀粉粒。在来自叶片的愈伤组织细胞中,质体体积变小,类囊体已经消失或部分消失,有的质体含有淀粉粒,但很少有质体小球。经培养分化后的愈伤组织,特别是在表层细胞中,质体数量急剧增多,形态变化很大,贮藏淀粉明显减少。基质内已有泡状或管状结构。有的质体已出现长的基质片层,但未见到基粒;质体中常有质体球。由此可见,质体是一个十分敏感的细胞器,它的变化与细胞分化有关,变化最大的部分是片层系统,贮藏淀粉,质体小球。片层系统中尤以基粒片层变化最为显著。  相似文献   

15.
Bienertia sinuspersici is a land plant known to perform C(4) photosynthesis through the location of dimorphic chloroplasts in separate cytoplasmic domains within a single photosynthetic cell. A protocol was developed with isolated protoplasts to obtain peripheral chloroplasts (P-CP), a central compartment (CC), and chloroplasts from the CC (C-CP) to study the subcellular localization of photosynthetic functions. Analyses of these preparations established intracellular compartmentation of processes to support a NAD-malic enzyme (ME)-type C(4) cycle. Western-blot analyses indicated that the CC has Rubisco from the C(3) cycle, the C(4) decarboxylase NAD-ME, a mitochondrial isoform of aspartate aminotransferase, and photorespiratory markers, while the C-CP and P-CP have high levels of Rubisco and pyruvate, Pidikinase, respectively. Other enzymes for supporting a NAD-ME cycle via an aspartate-alanine shuttle, carbonic anhydrase, phosophoenolpyruvate carboxylase, alanine, and an isoform of aspartate aminotransferase are localized in the cytosol. Functional characterization by photosynthetic oxygen evolution revealed that only the C-CP have a fully operational C(3) cycle, while both chloroplast types have the capacity to photoreduce 3-phosphoglycerate. The P-CP were enriched in a putative pyruvate transporter and showed light-dependent conversion of pyruvate to phosphoenolpyruvate. There is a larger investment in chloroplasts in the central domain than in the peripheral domain (6-fold more chloroplasts and 4-fold more chlorophyll). The implications of this uneven distribution for the energetics of the C(4) and C(3) cycles are discussed. The results indicate that peripheral and central compartment chloroplasts in the single-cell C(4) species B. sinuspersici function analogous to mesophyll and bundle sheath chloroplasts of Kranz-type C(4) species.  相似文献   

16.
The various types of plastids occurring in assimilatory and non-green tissues of Taxus baccata L. were investigated with respect to their ultrastructure and their content of starch, chlorophyll, Rubisco and the plastidic coupling factor CF1. Chlorophyll was estimated from fluorescence intensity, and the presence of both enzymes was examined by electron microscopy after immunogold labelling. All kinds of plastids, irrespective of their location in the tree, contained stromal membranes. Due to their content of CF1 and chlorophyll (except those of the roots) these membranes were addressed as thylakoids. Since the plastids also contain Rubisco, they represent chloroplasts. However, a decreasing gradient of all investigated chloroplastic characters from the plastids of the assimilatory tissue of the needles to those of axial tissues and of the roots was obvious. All kinds of plastids accumulated large amounts of starch especially in spring prior to bud burst but were virtually free of starch during the winter months.  相似文献   

17.
The present paper reports that the development ultrastructural observations of chloroplasts from sacred lotus (Nelumbo nucifera) embryo buds under invisible light. Embryo bud of sacred lotus is enclosed by three layers of thick integument (pericap, seed coat and thick fleshy cotyledons). During the period of the formation of embryo bud, it remained in dark condition, but turned from pale yellow to bluish-green. It was noteworthy that chloroplasts of the embryo bud had well developed giant grana under invisible light. Their developmental pathway in sacred lotus, however, was different from those of other higher plants grown under sunlight, intermittent light, or even in dark conditions (Fig. 1). The chloroplast development of embryo buds in Sacred lotus seeds in invisible light underwent only in the following three stages: (1) In the first stage the development was similar to that from other higher plants, the inner envelope membranes of the proplastids were invaginating. (2) In the second stage, a proplastid centre composed of prolamellar bodies (PLB)with semicrystalline structure was formed, and was accompanied by one or two huge starch grains in almost each proplastid. In the meantime, prothylakoid membranes extended parallelly from the plastid centre in three forms: (a) One plastid centre extending parallelly prothylakoid membranes from itself in one direction; (b) The same to (a), but extending in two directions; (c) Two plastid centres extending parallelly prothylakoid membranes between the centres. (3) In the third stage, grana and stroma thylakoid membranes of chloroplasts were formed. It is to be noted that most of chloroplasts had only one or two giant grana which often extended across the entire chloroplast body, and the length of the grana thylakoid membranes of the chloroplasts from embryo bud in Sacred lotus is 3 to 5 times as many as that in other higher plants. However, their stromatic thylakoid membranes were rather rare and very short. The giant grana were squeezed to the margin of the chloroplast envelope by one or two huge starch grains.  相似文献   

18.
甜菊组织培养物中叶绿体的超微结构与脱分代   总被引:2,自引:1,他引:1  
含有叶绿体的甜菊(Steviarebaudiana)愈伤组织细胞转移至新鲜培养基后,导致光合片层的逐渐减少或消失,最后叶绿体脱分化形成原质体样的结构。超微结构观察表明,光合片层的减少或消失与降解及叶绿体分裂特别是不均等缢缩分裂而致基质组分和类囊体膜稀释有关。这一过程并不完全同步,一些质体含有少量正常的片展而另一些质体含有退化的片层甚至片展结构完全消失。细胞的一个明显特点是细胞器大多聚集在细胞核附近,细胞质增加并向细胞中央伸出细胞质丝。同时可观察到原质体。培养7d后,许多细胞呈分生状态,细胞质富含细胞器,充满了细胞的大部分空间。此时细胞中的质体大多呈原质体状态。在细胞生长的稳定期,质体内膜组织成基质基粒片层,同时质体核糖体增加。文中讨论了高度液泡化细胞脱分化与细胞中叶绿体脱分化的关系。  相似文献   

19.
Usuda H 《Plant physiology》1988,88(4):1461-1468
Recently, a nonaqueous fractionation method of obtaining highly purified mesophyll chloroplasts from maize leaves was established. This method is now used to determine adenine nucleotide levels, the redox states of the NADP system, Pi levels and dihydroxyacetone phosphate/3-phosphoglycerate ratios in mesophyll chloroplasts of Zea mays L. leaves under different light intensities. The sum of the ATP, ADP, and AMP levels was estimated to be 1.4 millimolar and the ATP/ADP ratio was 1 in the dark and 2.5 to 4 in the light. The adenine nucleotides were equilibrated by adenylate kinase. The total concentration of NADP(H) in the chloroplasts was 0.3 millimolar in the dark and 0.48 millimolar in the light. The ratio of NADPH/NADP was 0.1 to 0.18 in the dark and 0.23 to 0.48 in the light. The Pi level was estimated to be 20 millimolar in the dark and 10 to 17 millimolar in the light. The 3-phosphoglycerate reducing system was under thermodynamic equilibrium in the light. The calculated assimilatory forces were 8 per molar and 40 to 170 per molar in the dark and the light, respectively. There was no relationship between the degree of activation of pyruvate, Pi dikinase, and adenylate energy charge, or ATP/ADP ratio or ADP level under various light intensities. Only a weak relationship was found between the degree of activation of NADP-malate dehydrogenase and the NADPH/NADP ratio or NADP(H) level with increasing light intensity. A possible regulatory mechanism which is responsible for the regulation of activation of pyruvate,Pi dikinase and NADP-malate dehydrogenase is discussed.  相似文献   

20.
Ueno  O 《Journal of experimental botany》1998,49(327):1637-1646
Cellular localization of photosynthetic enzymes was investigated by immunogold electron microscopy for leaves of nine C4 grasses (three NADP-malic enzyme (NADP-ME)subtype species, three NAD-malic enzyme (NAD-ME) subtype species, and three phosphoenolpyruvate carboxykinase (PCK) subtype species), two C4 sedges (NADP-ME subtype species) and two C4 dicots (an NADP-ME and an NADP/NAD-ME subtype species). In leaves of all species, immunogold labelling was present for phosphoenolpyruvate carboxylase in the cytosol of the mesophyll cells (MC) and for ribulose-1,5-bisphosphate carboxylase/oxygenase in the chloroplasts of the bundle sheath cells (BSC). However, considerable specific variation was found in the intercellular patterns of labelling for pyruvate orthophosphate dikinase (PPDK). In the NADP-ME grasses, two NAD-ME grasses, and the dicots, significant labelling for PPDK was present in the both the BSC and the MC chloroplasts. In the other NAD-ME grass, the PCK grasses, and the sedges, labelling for PPDK was present almost exclusively in the chloroplasts of the MC. These patterns were observed in the leaves of both young seedlings and mature plants. These results indicate that the accumulation of PPDK in leaves of C4 plants is not necessarily restricted to the MC, although the chloroplasts of the MC accumulate more than those of the BSC.Key words: C4 plants, immunolocalization, phosphoenolpyruvate carboxylase, pyruvate orthophosphate dikinase, ribulose-1,5-bisphosphate carboxylase/oxygenase.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号