首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   4篇
  2010年   7篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1972年   1篇
  1960年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
The terrestrial plant Borszczowia aralocaspica (Chenopodiaceae) has recently been shown to contain the entire C(4) photosynthesis mechanism within individual, structurally and biochemically polarized chlorenchyma cells rather than in a dual cell system, as has been the paradigm for this type of carbon fixation (Nature 414: 543-546, 2001). Analysis of carbon isotope composition and (14)CO(2) fixation shows that photosynthesis and growth of B. aralocaspica occurs through carbon acquired by C(4) photosynthesis. The development of this unique single-cell C(4) system in chlorenchyma cells was studied by analysis of young (0.2-0.3 cm length), intermediate (ca. 0.5-0.6 cm length), and mature leaves (ca. 3 cm length). The length of chlorenchyma cells approximately doubles from young to intermediate and again from intermediate to the mature leaf stage. In young chlorenchyma cells, there is a single type of chloroplast; the chloroplasts are evenly distributed throughout the cytosol, and all contain starch and rubisco. During leaf development, the activities of phosphoenolpyruvate carboxylase (PEPC; which is cytosolic), rubisco, and pyruvate,Pi dikinase (PPDK) increase on a chlorophyll basis. As leaves mature, chloroplasts differentiate into two distinct structural and biochemical types that are spatially separated into the proximal and distal parts of the cell (the proximal end being closest to the center of the leaf). The early stages of this polarization are observed in intermediate leaves, and the polarization is fully developed in mature leaves. The chloroplasts in the distal ends of the cell have reduced grana and little starch, while those at the proximal ends have well-developed grana and abundant starch. In mature leaves, PPDK is expressed in chloroplasts at the distal end of the cells, while rubisco and adenosine diphosphate glucose (ADPG) pyrophosphorylase are selectively expressed in chloroplasts at the proximal end of the cell. Mitochondrial polarization also occurs during development as nicotinamide-adenine dinucleotide phosphate-malic enzyme (NAD-ME) and the photorespiratory enzyme glycine decarboxylase are expressed in mature but not young leaves and are localized in mitochondria at the proximal end of the cells. The data show that single-cell C(4) develops from a single pool of identical organelles that develop differential biochemical functions and spatial partitioning in the cell during maturation.  相似文献   
2.
3.
BACKGROUND AND AIMS: Species having C4 photosynthesis belonging to the phosphoenolpyruvate carboxykinase (PEP-CK) subtype, which are found only in family Poaceae, have the most complex biochemistry among the three C4 subtypes. In this study, biochemical (western blots and immunolocalization of some key photosynthetic enzymes) and structural analyses were made on several species to further understand the PEP-CK system. This included PEP-CK-type C4 species Urochloa texana (subfamily Panicoideae), Spartina alterniflora and S. anglica (subfamily Chloridoideae), and an NADP-ME-type C4 species, Echinochloa frumentacea, which has substantial levels of PEP-CK. KEY RESULTS: Urochloa texana has typical Kranz anatomy with granal chloroplasts scattered around the cytoplasm in bundle sheath (BS) cells, while the Spartina spp. have BS forming long adaxial extensions above the vascular tissue and with chloroplasts in a strictly centrifugal position. Despite some structural and size differences, in all three PEP-CK species the chloroplasts in mesophyll and BS cells have a similar granal index (% appressed thylakoids). Immunolocalization studies show PEP-CK (which catalyses ATP-dependent decarboxylation) is located in the cytosol, and NAD-ME in the mitochondria, in BS cells, and in the BS extensions of Spartina. In the NADP-ME species E. frumentacea, PEP-CK is also located in the cytosol of BS cells, NAD-ME is very low, and the source of ATP to support PEP-CK is not established. CONCLUSIONS: Representative PEP-CK species from two subfamilies of polyphyletic origin have very similar biochemistry, compartmentation and chloroplast grana structure. Based on the results with PEP-CK species, schemes are presented with mesophyll and BS chloroplasts providing equivalent reductive power which show bioenergetics of carbon assimilation involving C4 cycles (PEP-CK and NAD-ME, the latter functioning to generate ATP to support the PEP-CK reaction), and the consequences of any photorespiration.  相似文献   
4.
Leaf anatomy was studied by light and electron microscopy and the leaf activities of RUBP carboxylase, PEP carboxylase, and malic enzyme were assayed in: Salsola australis and S. oreophila grown on the West Pamirs at 1800 m altitude; in S. australis grown on the East Pamirs at 3860 m; and in S. arbusculiformis grown in the Kisil-Kum desert in Middle Asia near 500 m. Carbon isotope fractionation ratio values also were measured on whole leaf tissue for 18 Salsola species field collected in these and other regions of the former USSR. S. australis leaves are cylindrical and in cross section exhibit a peripheral ring of mesophyll and then an inner ring of bundle sheath type cells; and its biochemical characteristics and deltaC values are typical of a C4 species of the NADP-malic enzyme malate-forming group. These traits were expressed independent of the plant growth altitude up to 4000 m. C4 type deltaC values were obtained in 14 of the Salsola species. Anatomical, structural, and biochemical features typical of the C4 syndrome were absent in S. oreophila and S. arbusculiformis. Four Salsola species, including these two, had C3-type deltaC values. Their cylindrical leaves in cross section exhibited two to three peripheral rings as layers of palisade parenchyma. Although their vascular bundles were surrounded by green bundle sheath cells, their organelle numbers were comparable to those in mesophyll cells. Neither bundle sheath cell wall thickenings nor dimorphic chloroplasts in two leaf cell types were observed. In S. oreophila, there was a high activity of RuBP carboxylase, but a low activity of C4 cycle enzymes. Interpretation of these data lends evidence to the hypothesis that a small group of C3 Salsola species, including S. oreophila, S. arbusculiformis, S. montana, and S. pachyphylla, arose as the result of a reversion of a C4 to a C3 type of photosynthetic CO2 fixation in the cooler climates of Middle Asia.  相似文献   
5.
Genus Suaeda (family Chenopodiaceae, subfamily Suaedoideae) has two structural types of Kranz anatomy consisting of a single compound Kranz unit enclosing vascular tissue. One, represented by Suaeda taxifolia, has mesophyll (M) and bundle sheath (BS) cells distributed around the leaf periphery. The second, represented by Suaeda eltonica, has M and BS surrounding vascular bundles in the central plane. In both, structural and biochemical development of C(4) occurs basipetally, as observed by analysis of the maturation gradient on longitudinal leaf sections. This progression in development was also observed in mid-sections of young, intermediate, and mature leaves in both species, with three clear stages: (i) monomorphic chloroplasts in the two cell types in younger tissue with immunolocalization and in situ hybridization showing ribulose bisphosphate carboxylase oxygenase (Rubisco) preferentially localized in BS chloroplasts, and increasing in parallel with the establishment of Kranz anatomy; (ii) vacuolization and selective organelle positioning in BS cells, with occurrence of phosphoenolpyruvate carboxylase (PEPC) and immunolocalization showing that it is preferentially in M cells; (iii) establishment of chloroplast dimorphism and mitochondrial differentiation in mature tissue and full expression of C(4) biochemistry including pyruvate, Pi dikinase (PPDK) and NAD-malic enzyme (NAD-ME). Accumulation of rbcL mRNA preceded its peptide expression, occurring prior to organelle positioning and differentiation. During development there was sequential expression and increase in levels of Rubisco and PEPC followed by NAD-ME and PPDK, and an increase in the (13)C/(12)C isotope composition of leaves to values characteristic of C(4) photosynthesis. The findings indicate that these two forms of NAD-ME type C(4) photosynthesis evolved in parallel within the subfamily with similar ontogenetic programmes.  相似文献   
6.
Melatonin protects against experimental immune ovarian failure in mice   总被引:2,自引:0,他引:2  
Experimental immune ovarian failure induced in CBA mice by either administration of xenogenic anti-ovarian antibodies or immunization with allogenic ovarian extracts impaired the meiotic maturation of oocytes and increased apoptosis of follicular cells. Immunization was accompanied with the inflammation and active immune reaction, as shown by the enlargement of regional lymph nodes, the increase of apoptosis in cultured lymph node cells and the increase of band and segmented neutrophil percentage in the blood. Triple injections of melatonin (5 mg/kg of the body weight) an hour before antibodies administration restored the meiotic maturation of oocytes and supported the survival of follicular and lymph node cells. In contrast, melatonin application upon immunization was not effective to prevent the ovary impairment and cell death. It is concluded that melatonin protects against immune ovary failure induced by xenogenic anti-ovarian antibodies.  相似文献   
7.
8.
The chloroplast ultrastructure, plastid pigments, and potential photosynthesis of leaf mesophyll cells were examined during the vegetative season of two spring ephemers Scilla sibirica Haw. and Chionodoxa luciliae Boiss. The development of chloroplasts was shown to precede the appearance of photosynthesis. The earliest stage of leaf growth was marked by the synthesis of carotenoids that play a structural and organizational role in the formation of chloroplast grana and protect the photosynthetic apparatus from photodynamic destruction under high insolation and low temperature conditions. Chlorophyll synthesis was closely correlated with the dynamics of potential photosynthesis. All these structural and functional features of mesophyll cells reflect the evolutionary strategies of adaptation in spring ephemers, which enable these plants to complete their short life cycle in the environment combining low temperature and high insolation.  相似文献   
9.
While malate and fumarate participate in a multiplicity of pathways in plant metabolism, the function of these organic acids as carbon stores in C3 plants has not been deeply addressed. Here, Arabidopsis (Arabidopsis thaliana) plants overexpressing a maize (Zea mays) plastidic NADP-malic enzyme (MEm plants) were used to analyze the consequences of sustained low malate and fumarate levels on the physiology of this C3 plant. When grown in short days (sd), MEm plants developed a pale-green phenotype with decreased biomass and increased specific leaf area, with thin leaves having lower photosynthetic performance. These features were absent in plants growing in long days. The analysis of metabolite levels of rosettes from transgenic plants indicated similar disturbances in both sd and long days, with very low levels of malate and fumarate. Determinations of the respiratory quotient by the end of the night indicated a shift from carbohydrates to organic acids as the main substrates for respiration in the wild type, while MEm plants use more reduced compounds, like fatty acids and proteins, to fuel respiration. It is concluded that the alterations observed in sd MEm plants are a consequence of impairment in the supply of carbon skeletons during a long dark period. This carbon starvation phenotype observed at the end of the night demonstrates a physiological role of the C4 acids, which may be a constitutive function in plants.Fumarate can accumulate to high levels in Arabidopsis (Arabidopsis thaliana) and agronomically important C3 plants like soybean (Glycine max) and sunflower (Helianthus annuus; Chia et al., 2000; Fahnenstich et al., 2007). It is synthesized from malate through the action of fumarase (Gout et al., 1993). Malate is an intermediate of the tricarboxylic acid (TCA) cycle and a regulator of pH and nutrient uptake and stomatal function (Fernie and Martinoia, 2009). Malate also has an important role in photosynthesis in Crassulacean acid metabolism and C4 plants (Drincovich et al., 2010). In some C3 plants like Arabidopsis, malate and fumarate levels show diurnal changes similar to those of starch and Suc: They increase during the day and decrease during the night, suggesting that they function as transient carbon storage molecules (Fahnenstich et al., 2007). As fumarate is highly concentrated in stems (Stumpf and Burris, 1981) and phloem exudates (Chia et al., 2000), it was proposed that it might also be involved in carbon partitioning. There is variation in the extent to which C3 plants store photosynthates in the form of sugars and organic acids in leaves during carbon assimilation (Zeeman and Ap Rees, 1999; Chia et al., 2000; Zeeman et al., 2007). In Arabidopsis, approximately half of the photoassimilates are partitioned into starch (Sun et al., 1999; Zeeman and Ap Rees, 1999). Under short days (sd), the partitioning of assimilates to the formation of starch is greater than in long days (LD; Gibon et al., 2004). Thus, the longer the night, the higher is the proportion of photoassimilates stored as starch to provide carbon skeletons during the prolonged dark period.We recently established transgenic lines of Arabidopsis with decreased malate and fumarate levels by overexpressing a maize (Zea mays) plastidic NADP-malic enzyme (MEm plants; Fahnenstich et al., 2007). This enzyme catalyzes the oxidative decarboxylation of malate rendering pyruvate, CO2, and NADPH (Maurino et al., 1996). The MEm plants showed an accelerated dark-induced senescence that could be rescued by supplying Glc, Suc, or malate, suggesting that the lack of a readily mobilized carbon source is likely to be the initial factor leading to the premature induction of senescence in MEm plants. In line with these, malate and fumarate were the only two metabolites whose levels were significantly decreased in the MEm lines after dark incubation and whose levels recover to values similar to wild type after incubation with Glc (Fahnenstich et al., 2007).In this work we address the question whether malate and fumarate function as storage carbon molecules in the C3 plant Arabidopsis by analyzing the consequences of sustained low levels of these organic acids on the performance of MEm plants growing in different photoperiods. We demonstrate that low malate and fumarate levels do not alter morphology, photosynthetic functions, or growth parameters in LD plants. By contrast, MEm plants suffer from a marked decrease in photosynthetic performance and show reduced biomass and a pale-green phenotype in sd. When grown in sd at the end of the night the wild type showed a shift from carbohydrates as the main substrate for respiration to organic acids, while the MEm lines used more reduced substrates (e.g. fatty acids and proteins) to fuel respiration. The alterations observed in sd point to an impairment in the supply of energy and carbon skeletons during a long night, which supports the proposed physiological roles of malate and fumarate as essential storage carbon molecules in Arabidopsis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号