首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
不同营养盐水平下附着生物对水生植物影响的实验结果表明, 随营养盐浓度的升高, 附着生物的生物量随之增加, 且对水生植物光合作用的抑制作用也相应增强. 结合其他研究的风浪、光照、营养盐形态和鱼的牧食对水生植物的影响, 得出在浅水富营养化湖泊中, 草型生态系统与藻型生态系统互相转化的先决条件是营养盐水平, 当其浓度发生变化时, 对生态系统造成胁迫, 导致生态系统不稳定, 此时, 外部的任何一点扰动(如风浪、高水位、鱼等)就有可能使得原来的生态系统发生崩溃, 新的与环境相协调的生态系统得以建立. 从理论上解释了湖泊生态系统在草型和藻型之间转化的机理, 为湖泊富营养化治理与生态修复提供了理论依据.  相似文献   

2.
沉水植物是水生态系统中重要的初级生产者, 其生长和分布受到诸多环境因子的影响。文章综述了沉积物再悬浮对沉水植物影响的研究进展, 总结了沉积物再悬浮对湖泊沉水植物光合作用、生长发育、繁殖等方面存在的影响, 并对存在的问题与今后的研究方向进行了探讨和展望。  相似文献   

3.
通过野外调查、资料收集并结合GIS方法对长江中下游9个湖泊岸线形态演变和水生植物多样性现状及变化进行了研究。结果显示,近几十年来长江中下游一些湖泊岸线长度和计盒维数均显著降低;水生植物物种多样性总体呈下降趋势。相关性分析表明,湖泊岸线发育系数和湖泊计盒维数均与水生植物多样性呈显著相关;湖泊岸线形态特征显著影响沉水、漂浮植物物种多样性。本研究表明湖泊岸线形态对水生植物的生长及分布影响显著,保护湖泊岸线形态对维持水生植物多样性及湖泊生态系统功能具有重要作用。  相似文献   

4.
作为浅水湖泊的重要特性之一,由风浪等动力作用引起的沉积物再悬浮对浮游藻类的初级生产力、群落结构具有重要意义。本研究通过生长季节(5-6月)在太湖梅梁湾湖岸的中宇宙模拟实验,比较在同样的外源负荷下浮游藻类对不同的沉积物再悬浮程度的影响特征,以及其主要的影响因子。实验在约250L的大桶中进行,通过位于沉积物-水界面的水泵的动力作用,模拟了三个不同程度沉积物再悬浮:无再悬浮即对照、弱悬浮和强悬浮程度。实验结果显示:(1)对照、弱悬浮和强悬浮之间悬浮物浓度呈显著性梯度变化,平均值分别为5、30、40 mg·L-1,水下20cm光密度分别为表面光密度的80%、35%和25%。TN和TP在悬浮处理组显著高于对照组,但是弱悬浮和强悬浮之间差异不显著。生物可利用的各种溶解性营养盐形式对再悬浮的响应特征不明显。(2)浮游藻类生物量和群落结构对再悬浮的响应显著。对照组的Chla在整个实验阶段都很低,强悬浮组和弱悬浮组的平均Chla分别5倍和2倍于对照组。实验初始浮游藻类群落种类多样性低,优势种群主要为隐藻(隐藻属Cryptomonas spp.和蓝隐藻Chroomonas acuta)。再悬浮处理显著促进了隐藻的生长,但弱悬浮和强悬浮之间差异不显著。对照组优势种群演替为微小型种类蓝隐藻和绿藻门的纤维藻属(Ankistrodesmus sp.)。(3)以相对丰度为统计数据,浮游动物群落结构对再悬浮的响应显著,弱悬浮和强悬浮之间差异不显著。对照组的枝角类大型种类溞属(Daphnia spp.)丰度显著高于再悬浮处理组,枝角类小型种类象鼻溞属(Bosmina spp.)和网纹溞属(Ceriodaphnia spp.)、轮虫丰度则呈相反趋势。可见,再悬浮促进了沉积物营养盐的释放和水下光照的衰减,还影响了浮游动物的群落结构,使其向摄食藻类能力较差的种类演替,从而在上行(bottom-up)和下行(top-down)两个方面影响了浮游藻类的现存量和群落结构。  相似文献   

5.
玄武湖菹草种群的发生原因及人工收割对水环境的影响   总被引:1,自引:0,他引:1  
利用以沉水植物为主的水生植物进行水体生态修复是目前研究的热点问题, 为研究南京玄武湖2005-2006年的菹草(Potamogeton crispus)种群发生的原因及人工收割对水体的影响, 对玄武湖不同湖区定期监测其透明度、溶解氧、pH、TN、TP等水质指标, 并进行分析, 结果表明: 对湖泊蓝藻水华的应急处理, 使水体透明度提高179.5%, DO含量增高24.1%, TN、TP分别降低54.1%、74.5%, pH由9.1降至8.7, 水质改善是菹草种群萌发并能大规模生长的主要原因。而菹草生长阶段短期内对菹草进行大规模收割使水体DO含量降低42.1%, 透明度下降51.5%(P0.05), 收割虽从水体中携带走部分氮、磷营养盐, 但差异不显著(P0.05), 且收割后TP出现升高现象。故在对草藻型湖泊生态修复过程中, 可先期通过物理或化学手段改善水体透明度、调节pH、降低营养盐, 使其满足水生植物萌发及幼苗生长的需求, 为水生植物后期存活并生长打下基础, 在后期生态管理过程中, 应逐步收割植株, 缓慢从水体携带营养盐, 以达到改善水质, 恢复及重建水生生态系统的目的。    相似文献   

6.
城市湖泊富营养化成因和特征*   总被引:21,自引:1,他引:20  
城市湖泊的功能主要体现在旅游、如愿、洪涝调蓄排水、调节气候以及改善城市生态环境等方面。根据湖泊所处地理位置和湖泊水质退化现象,阐述了城市湖泊水体从贫营养到富营养转变的主要原因;从水质的理化指标、底质污染物含量和水生态系统等方面初步时论了城市型浅水湖泊富营养化的特征。同非城市湖泊相比:大部分城市湖泊的水体透明度下降,污染严重的湖泊还会出现水体发黑或出现水华;水质和底质的氮磷及其它污染物含量较高,水生态系统急剧退化,水生植物以浮游植物为主,藻类大量繁殖,高等水生植物不断消亡。根据综合营养度指数对我国主要城市湖泊进行分级评价的结果表明,我国城市湖泊均达到了富营养化或严重富营养化程度。  相似文献   

7.
环境因素对湖泊高等水生植物生长及分布的影响   总被引:1,自引:0,他引:1  
综述了水质、底质、周丛生物,浮游生物等对湖泊水生高等植物生长的影响,指出:水生高等植物的恢复是湖泊生态功能恢复的关键;水生高等植物恢复,应在营造其合适生境的基础上,以自然恢复为主,人工恢复应遵循自然规律,优化群落结构;草食性鱼类对湖泊水生高等植物负面影响较大,应注意控制.  相似文献   

8.
长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系   总被引:25,自引:1,他引:24  
水生植物组织内氮和磷(N和P)含量受到水体营养状况和植物生长状况影响。对长江中游江汉湖群不同营养水平湖泊中大型水生植物的N和P含量3个季度的研究表明,在不同生活型水生植物中,沉水植物主要分布在中营养到中富营养湖泊中,在富营养湖泊均无分布,浮叶和挺水植物在不同营养类型湖泊的沿岸带均有分布。N和P含量以沉水植物最高,浮叶植物次之,挺水植物最低。水生植物的N和P含量都达到或超过生长所需最低N和P阈值,代表性浮叶植物和沉水植物的N和P含量随着湖泊营养水平提高呈现规律性变化。湖泊5种常见的水生植物N和P含量与水柱中不同种类N和P浓度具有季节性相关:菱(TrapabispinosaRoxb.)春夏季P含量都与TP(总磷)和TDP(总溶解磷)明显相关,春季N含量与NH4—N(氨氮)明显相关;春季黄丝草(PotamogetonmaackianusA.Benn.)的P含量与TP明显相关,夏季与TDP明显相关,春季和夏季黄丝草和穗花狐尾藻(MyriophyllumspicatumL.)的N含量与TN(总氮)和TDN(总溶解氮)显著正相关,秋季成负相关;夏季芦苇(PhragmitescommunisTrin.)P含量与TP和TDP显著相关;春季芦苇和香蒲(TyphaorientalisPresl.)N含量与NH4N和NO2N(亚硝态氮)显著相关。    相似文献   

9.
湖泊水动力对水生植物分布的影响   总被引:3,自引:0,他引:3  
水动力作为湖泊水生植物恢复的关键限制性因子,其对水生植物的影响机制是当前迫切需要关注的科学问题。从水动力作用下水生植物的分布、水生植物受力以及水生植物自身机械抗性3个方面系统梳理了当前的研究方法与结论。结果表明,水生植物在河流湖泊中的丰度、空间分布与水动力密切相关,各物种对水流胁迫表现出不同的响应;植物在水动力作用下的受力观测和研究主要依赖模拟试验,通过计算定量表征不同物理外型物种在水动力作用下的受力,明确了生物量和植物系数等影响受力的关键参数,为不同塑形物种受力的对比分析提供了研究方法;植物机械抗性主要基于测力装置观测,通过断裂应力、弯曲力等生物力学参数表征。在当前研究背景下,水生植物尤其是沉水植物在湖泊中的实际受力情况依然是研究难点,需要借助新的观测手段和研究方法来阐明植物在复杂的湖泊水动力环境下的实际受力特征。此外,还需要进一步开展水生植物在湖泊中的实际受力与植物自身机械抗性的耦合研究,这是开展水生植物响应湖泊水动力机理研究的关键。  相似文献   

10.
典型河床底质组成中底栖动物群落及多样性   总被引:13,自引:1,他引:12  
段学花  王兆印  程东升 《生态学报》2007,27(4):1664-1672
底栖动物是河流生态系统中食物链的重要环节。通过对长江、黄河、东江和拒马河等河流野外调查和采样分析研究了河床底质组成对底栖动物群落结构的影响规律。研究结果发现,不同河床底质组成中的底栖动物结构差别很大,不同地理位置而相同底质条件和水力条件的河流底栖动物群落组成相似,说明河床底质是影响河流底栖动物群落结构的关键因素,受地理位置和大气候的影响不大;利用多项生物指标分析了不同河床底质组成中底栖动物群落的多样性,卵石河床且有水生植物生长的河流底栖动物物种组成最丰富,大河中沙质河床不稳定,未采集到底栖动物;不同底质类型河床中的优势种群亦不同。并分析了采样所得底栖动物物种数与采样面积之间的关系,符合前者随后者呈幂指数增加的规律,当实测采样面积为1~2m^2时物种数变化不大,建议一般情况下最小采样面积应为1m^2。  相似文献   

11.
湖泊生态恢复的基本原理与实现   总被引:13,自引:0,他引:13  
秦伯强 《生态学报》2007,27(11):4848-4858
当前我国湖泊污染及富营养化问题非常严重。湖泊治理的一个有效途径就是恢复水生植物,通过草型湖泊生态系统的培植来达到控制富营养化和净化水质的目的。但是,迄今为止,只有在局部水域或滨岸地区获得成功,恢复的水生植物主要是挺水植物或漂浮植物。鲜有全湖性的水生植物恢复和生态修复成功的例子。原因是对湖泊生态系统退化及其修复的机理了解甚少。实际上,环境条件不同决定了生态系统类型的不同,只有通过环境条件的改变才能实现生态系统的转变。利用草型湖泊生态系统来净化水质,其实质是利用生态系统对环境条件的反馈机制。但是,这种反馈无法从根本上改变其环境条件,因此其作用是有限的,不宜过分夸大。以往许多湖泊生态修复的工作之所以鲜有成功的例子,原因就是过于注重水生植物种植本身,而忽视了水生植物生长所需的环境条件的分析和改善。实施以水生植物恢复为核心的生态修复需要一定的前提条件。就富营养化湖泊生态恢复而言,这些环境条件包括氮磷浓度不能太高,富含有机质的沉积物应该去除,风浪不能太大以免对水生植物造成机械损伤,水深不能太深以免影响水生植物光合作用,鱼类种群结构应以食肉性鱼为主等等。因此,在湖泊污染很重或者氮磷负荷很高的情况下,寻求以沉水植物为核心的湖泊生态恢复来改善水质是不切实际的。为此,提出湖泊治理应该遵循先控源截污、后生态恢复,即先改善基础环境,后实施生态恢复的战略路线。  相似文献   

12.
Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.  相似文献   

13.
Frequent resuspension of sediments is recognized as an important process in large shallow lakes, impeding the recovery of eutrophic lakes. A large-scale project, including a wave barrier (3.3 km long) and a soft enclosure, was implemented to reduce wave energy and sediment resuspension in Lake Taihu, eastern China. The effects of the wave-reduction engineering on sediment resuspension and internal nutrient loading were investigated. Results showed that sediment resuspension rates as well as suspended solids (SS) in the areas protected by the wave barrier and the soft enclosure were significantly lower than in the unprotected areas. There was a positive relationship between total phosphorus (TP) and SS; thus internal loading of phosphorus was significantly reduced by the wave-reduction structure. High nutrient levels and phytoplankton biomass persisted during the experiment period, suggesting that additional measures, such as re-establishment of the macrophyte community, must be included to help restore the water quality in such a large, shallow and eutrophic lake.  相似文献   

14.
We examined sediment resuspension and light attenuation in relation to the potential for macrophytes to improve water quality conditions in Peoria Lake, Illinois (U.S.A.). The lake exhibited high total suspended solids (TSS) loading and retention of predominantly fine-grained particles in 2000. Large fetches along prevailing wind rose, coupled with shallow morphometry and sediment particles composed of >90% silt and clay resulted in frequent periods of sediment resuspension. As calculated (wave theory) shear stress increased above the critical shear stress (measured experimentally), turbidity increased substantially at a resuspension monitoring station. Resuspension model explorations suggested that establishment of submersed aquatic macrophytes could substantially reduce sediment resuspension in Peoria Lake. However, K d is currently very high, while Secchi transparency low, at in-lake stations. Thus, in order to establish a persistent macrophyte population in the lake to control resuspension, the underwater light regime will have to improve quite dramatically.  相似文献   

15.
Some well-documented studies on restoring eutrophic lake systems in The Netherlands by fish stock management have been evaluated with the emphasis on the role of macrophytes. Furthermore, the factors determining the light climate for submerged macrophytes in a large shallow eutrophic lake (Lake Veluwe) have been assessed and the potential success of biomanipulation in large scale projects is discussed. Today relatively little attention has been paid to macrophyte management although the importance of macrophytes in lake restoration has been recognized regularly. The biomanipulation strategy was successful in small scale projects. In a large scale project, however, wind-induced resuspension may largely determine the underwater light climate through attenuation by the water column and periphytic layer. Therefore, restoration of relatively large waterbodies by fish stock management only is expected not to lead to any noteworthy improvement of the light climate for submerged macrophytes. Additional measures aimed at reducing wind-induced resuspension of sediment particles and reestablishing of the macrophyte stands are required for successful biomanipulation strategies. Water quality managers should pay more attention to macrophyte stands in biomanipulation projects because macrophytes enhance a more stable and diverse ecosystem. Restoration objectives and the methods of their achievement must be carefully planned since an abundant submerged macrophyte vegetation may have undesirable effects as well.  相似文献   

16.
Our study aim was to elucidate the effects of different species of submerged macrophytes and biomass levels on sediment resuspension. For this purpose experiments were conducted in four different enclosures (Potamogeton maackianus enclosure-PE, Vallisneria spinulosa enclosure-VE, manipulated enclosure-ME and aquaculture enclosure-AE). A sediment trap method was employed and the experiments were conducted from summer to winter in a shallow freshwater lake located in central China. A total of 813, 1277, 613 and 693 g DW m−2 of sediment was resuspended in VE, AE, ME and PE, respectively. Our results showed that P. maackianus was more effective than V. spinulosa in restraining sediment resuspension. Macrophytes reached their maximum effectiveness of reducing resuspension at a certain species-specific biomass threshold above which biomass effects on resuspension were negligible. The threshold biomass was estimated as 300 g m−2 for P. maackianus. Accordingly, within a lake management and aquaculture aspect, we conclude that as long as biomass does not fall below this threshold its consumption will not influence sediment resuspension. In the mid-lower reaches of the Yangtze River macrophyte coverage protects the lake sediment against adverse effects of monsoon wind; if the vegetation is eroded aquaculture sediment resuspension increases significantly.  相似文献   

17.
Biomanipulation of eutropicated peaty lakes has rarely been successful; clear water with dense macrophyte stands fails to develop in most cases. It was unclear whether (1) high turbidity due to resuspension by benthivorous fish or wind is the major cause of low macrophyte density or whether (2) the establishment of submerged macrophyte stands is prevented by a lack of propagules, low cohesive strength of the lake sediment, high concentrations of phytotoxics, grazing by waterfowl and/or shading by periphyton growth. These hypotheses were tested in an experiment in a shallow peat lake in the Netherlands (Terra Nova). Removal of fish from a 0.5 ha experimental site resulted in clear water and the development of a dense (90% coverage) and species-rich (10 species) submerged vegetation. At a fish-stocked site and a control site the water remained turbid and dense macrophyte stands did not develop. The establishment of submerged macrophytes appeared not to be limited by a lack of propagules. Introduced plants grew poorly in turbid water, but very well in clear water. Exclosures showed that bird grazing reduced the plant biomass. In clear water grazing seemed to enhance the vegetation diversity. Periphyton development did not prevent plant growth in clear water. After the experiment, the fish stock was greatly reduced in the whole lake (85 ha), to test if (3) in a large lake, submerged macrophyte stands will not develop after biomanipulation. In the first season after fish reduction, transparency increased and species-rich submerged macrophyte stands developed, covering 60% of the shallow parts of the lake. Most of the species known to have occurred in the past re-established. The results indicate that high turbidity caused by benthivorous fish in combination with bird grazing were the major causes of the absence of submerged macrophyte stands in this lake. Abiotic conditions after the clearing of the lake were suitable for the growth of macrophytes. We infer that the restoration potential of submerged macrophyte stands in eutrophicated peaty lakes can be high, and results can be obtained quickly.  相似文献   

18.
A yearlong campaign to examine sediment resuspension was conducted in large, shallow and eutrophic Lake Taihu, China, to investigate the influence of vegetation on sediment resuspension and its nutrient effects. The study was conducted at 6 sites located in both phytoplankton-dominated zone and macrophyte-dominated zone of the lake, lasting for a total of 13 months, with collections made at two-week intervals. Sediment resuspension in Taihu, with a two-week high average rate of 1771 g·m-2·d-1 and a yearly average rate of 377 g·m-2·d-1, is much stronger than in many other lakes worldwide, as Taihu is quite shallow and contains a long fetch. The occurrence of macrophytes, however, provided quite strong abatement of sediment resuspension, which may reduce the sediment resuspension rate up to 29-fold. The contribution of nitrogen and phosphorus to the water column from sediment resuspension was estimated as 0.34 mg·L-1 and 0.051 mg·L-1 in the phytoplankton-dominated zone. Sediment resuspension also largely reduced transparency and then stimulated phytoplankton growth. Therefore, sediment resuspension may be one of the most important factors delaying the recovery of eutrophic Lake Taihu, and the influence of sediment resuspension on water quality must also be taken into account by the lake managers when they determine the restoration target.  相似文献   

19.
The aim of this study was to estimate the effect of sediment resuspension, a common phenomenon in many lakes, on the phosphorus budget of a eutrophicated lake. We used two different approaches, mass balance calculations and spatially comprehensive resuspension measurements, to determine the level of phosphorus loading from which rehabilitation action is started in a dimictic north temperate lake. The effect of resuspension was assumed to be significant, since it often is a governing process for cycling of material in lakes. Internal loading was multifold to that of external loading as determined by the budget calculation. Spatially comprehensive sedimentation and resuspension measurements were necessary, since deep site versus spatially comprehensive measurements had a marked difference in their results. Resuspension of P slightly exceeded the internal loading assessed by budget calculations and thereby proved its significance as a governing in-lake process that influences P cycling strongly. The shallow areas were of importance, since most of the total P load originated from there. The fate of P after resuspension depends on the retention capacity of resuspended particles in addition to prevailing biological and physico-chemical conditions. Therefore, sediment resuspension can either strengthen or diminish internal nutrient load and the processes of the shallow zones are of importance.  相似文献   

20.
Trapa maximowiczii is a floating-leaved macrophyte common in China. The plant population in East Bay, Lake Taihu, has been expanding rapidly in recent years. In order to better understand the mechanisms controlling the population dynamics in this species, two outdoor experiments were conducted from 9 May to 8 July 2007, evaluating the effect on the growth of T. maximowiczii of different nutrient levels in water column and sediment. Results showed that high concentration of nutrients (nitrogen and phosphorous) in water led to significant increases in rosette diameter and plant dry weight, dry weight of aquatic roots and anchoring roots, but had no effect on plant height or main stem node count. Phosphorus enrichment resulted in increases in plant dry weight and seed number. However, no such difference was observed between the nitrogen enrichment treatment and the control. Sediment fertility had significant effects on plant growth. Plant height, plant dry weight, dry weight of aquatic and anchoring roots, and maximum rosette diameter were significantly greater in high-nutrient sediment than those in low-nutrient sediment. This study suggests that eutrophication of water (especially increasing phosphorus loading) and accumulated nutrients in sediment may be among the causes leading to increasing biomass of the floating-leaved macrophyte T. maximowiczii in East Bay of Lake Taihu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号