首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Under the present investigation effectiveness of three aquatic macrophytes Pistia stratiotes L. (water lettuce), Spirodela polyrrhiza W. Koch (duckweed) and Eichhornia crassipes were tested for the removal of five heavy metals (Fe, Zn, Cu, Cr and Cd). These plants were grown at three different concentrations (1.0, 2.0 and 5.0mgl(-1)) of metals in laboratory experiment. Result revealed high removal (>90%) of different metals during 15 days experiment. Highest removal was observed on 12th day of experiment, thereafter it decreased. Results revealed E. crassipes as the most efficient for the removal of selected heavy metals followed by P. stratiotes and S. polyrrhiza. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the water. Significant correlations between metal concentration in final water and macrophytes were obtained. Plants have accumulated heavy metals in its body without the production of any toxicity or reduction in growth. Selected plants shown a wide range of tolerance to all of the selected metals and therefore can be used for large scale removal of heavy metals from waste water.  相似文献   

2.
Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.  相似文献   

3.
利用微生物治理重金属污染已经成为一个研究的热点,并被视为将最终替代传统的物理、化学等处理方式的一种方法.但由于一些微生物存在安全性、繁殖速度慢等问题而造成了处理效果不佳.因此,以安全性高、繁殖速度快的苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)为研究载体,寻找最适Bt的镍污染处理方法对于提高...  相似文献   

4.
Abstract

Electrometric studies were carried out on the interaction of heavy metal ions such as manganese, chromium, nickel, copper, zinc, cadmium and lead with the extracted organic matter, humic and fulvic acid from the sludge in a sewage oxidation pond. The distribution of heavy metals was between 60 and 97%, which is associated with the solid waste (sludge) of the oxidation pond. The adsorption/removal efficiency of metal ions onto the sludge ash was more than 90% and 97%, respectively, in the pure system. To obtain the ash, the sludge was burnt at 500°C, treated with nitric acid (1+1) to leach out all the metals and then filtered; the residue left on the filter paper was the pure ash. Both this and that coated with organic matter were studied. The adsorption isotherm for metals, humic/fulvic acids and metal-humic/fulvic acid complexes in the metal-free sludge ash and in the organic matter in the pure system were studied using the Freundlich relationship. Good agreement was found suggesting that sediment and humic/fulvic acids have an important role in the mobility, dispersion and sedimentation of metal ions in an aquatic environment. More of these heavy metals are removed in the pure system than in the natural system. This may be due to the lesser availability of humic and fulvic acids in the lagoons during the short detention time of sewage in suspension in the oxidation pond, whereas the sludge which has settled to the bottom of the pond for several years contains rich decomposed organic matter in the form of humic and fulvic acids containing heavy metals. Such pure systems could be useful for the effective removal of heavy metals.  相似文献   

5.
Tannery waste is a major environmental concern that needs proper management. Tannery solid waste (TSW) can be added to the soil as an organic amendment but needs metal removal. Chelant-assisted phytoremediation hastens the process of metal removal but also poses risk of leaching at the same time. This research evaluates Ethylenediaminetetraacetic acid (EDTA)-assisted phytoextraction and associated leaching hazard using metal-tolerant plants. Greenhouse trials were carried out with sunflower, spinach, and marigold using columns of uniform diameter packed with field soil and multimetal contamination of TSW (5% and 10%) with four EDTA doses. The amounts of metal absorbed or leached conformed to amounts in the soil amendment and the dose of EDTA. The mobilization of metals by EDTA was however metal-specific. The metals that were extracted in greater amounts by the plants were leached less compared to Cr and Cu. A significant amount of other metals was leached down and thus less amount was phytoextracted by the plants e.g. Cd and Ni. A high correlation was observed between the amount of metal absorbed by the plant and the amount in leachate except for Cr in all the plants. Antioxidant activities like SOD and catalase were also found to be high in sunflower and spinach.  相似文献   

6.
微生物与重金属间的相互作用及其应用研究   总被引:74,自引:6,他引:68  
从多方面阐述了微生物与重金属二者间相互作用,指出微生物在生长代谢过程中能淋滤、吸收和转化重金属,对重金属有一定的抗性和解毒作用;但是,一定浓度的重金属对微生物过程及其种群具有较大的毒性。影响微生物在环境介质中的活动,矿业工程生产工艺已充分利用微生物能淋滤,吸收和转化重金属等特性来处理低品位难浸矿石,环境保护领域也积极利用微生物对重金属的抗性和解毒作用来实现工业废弃物的处理以及被重金属污染土壤的修复。利用微生物的生物量及其活性可以评价环境中不同介质的重金属污染水平。  相似文献   

7.
The bioregeneration of the solutions obtained after the leaching of copper and zinc from slag waste by sulfuric acid solutions containing ferric iron was examined. For bioregeneration, associations of mesophilic and moderately thermqophilic acidophilic chemolithotrophic microorganisms were made. It has been shown that the complete oxidation of iron ions in solutions is possible at a dilution of the pregnant leach solution with a nutrient medium. It has been found that the maximal rate of oxidation of iron ions is observed at the use of a mesophilic association of microorganisms at a threefold dilution of the pregnant leach solution with a nutrient medium. The application of bioregeneration during the production of nonferrous metals from both copper converter slag and its waste would make it possible to approach the technology of their processing using the closed cycle of workflows.  相似文献   

8.
Chemical acid leaching is an effective technique for extracting toxic metals from the finest fractions of polluted soils. Nevertheless, the use of large quantities of reagents and process water results in prohibitive operating costs. The purpose of this study was to evaluate the technical and economic advantages of recirculating water in a counter-current leaching process (CCLP). Five 1-h sulfuric acid extraction steps (at pH = 1.5) followed by three 5-min water-washing steps were applied to the fine particle fraction (<0.125 mm) of an industrial soil polluted by Cd (13.2 mg·kg?1), Cu (3 100 mg·kg?1), Mn (685 mg kg?1), Pb (550 mg·kg?1), and Zn (2 840 mg·kg?1). The leaching experiments were carried out at ambient temperature using a 10% soil suspension and in 1-L working volume stirred tank reactors. This paper presents results of conventional and counter-current leaching process (CCLP) tests and shows that the CCLP yields removal results for Cu (85%), Zn (86%), Mn (75%), and Cd (90%) that are similar to those obtained using the conventional leaching process. Moreover, the CCLP uses half of the quantity of acid and one-eighth of the amount of water that the conventional process uses. Metal precipitation with NaOH and Ca(OH)2 was applied to treat the acidic leachates, and good metal removal yields were achieved with both reagents. However, the large consumption of chemicals implies high operating costs. In addition, the precipitation causes considerable sludge production, particularly when using Ca(OH)2. Overall, the CCLP coupled to metal precipitation using NaOH and water recycling appears to be the most attractive option for the removal of toxic metals from this industrial soil.  相似文献   

9.
This article describes the removal of heavy metals from contaminated clayey soils by soil washing using various extractants. Two clayey soils, kaolin, a low buffering soil with pH of 5, and glacial till, a high buffering soil with pH of 8, were used to represent various soil conditions. These soils were spiked with chromium (Cr), nickel (Ni), and cadmium (Cd) to simulate improper disposal of typical electroplating waste constituents. The following extracting solutions were investigated for the removal of heavy metals from the soils: deionized water, distilled water, and tap water; acetic acid and phosphoric acid; chelating agents ethylenediaminetetraacetic acid (EDTA) and citric acid; and the oxidizing agents potassium permanganate and hydrogen peroxide. The effect of extractant concentration on removal of heavy metals was also investigated. Complete removal of Cr was achieved using 0.1?M potassium permanganate for kaolin, while a maximum of 54% was removed from glacial till. A maximum Ni removal of 80% was achieved using tapwater for kaolin, while a maximum removal of 48 to 52% was achieved using either 1?M acetic acid or 0.1?M citric acid for glacial till. A maximum Cd removal of 50% was achieved using any of the extractants for kaolin, while a maximum removal of 45 to 48% was obtained using either acids or chelating agents for glacial till. Overall, this study showed that complete removal of Cr, Ni, and Cd from clayey soils is difficult to achieve using the soil-washing process, and also the use of one extractant may not be effective in removing all metals. A sequential extraction using different extractants may be needed for the removal of multiple metal contaminants from clayey soils.  相似文献   

10.
Activated carbon was prepared from coirpith by a chemical activation method and characterized. The adsorption of toxic heavy metals, Hg(II), Pb(II), Cd(II), Ni(II), and Cu(II) was studied using synthetic solutions and was reported elsewhere. In the present work the adsorption of toxic heavy metals from industrial wastewaters onto coirpith carbon was studied. The percent adsorption increased with increase in pH from 2 to 6 and remained constant up to 10. As coirpith is discarded as waste from coir processing industries, the resulting carbon is expected to be an economical product for the removal of toxic heavy metals from industrial wastewaters.  相似文献   

11.
This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.  相似文献   

12.
The present study involved the assessment of potential generation of acid drainage and also metal leaching from an abandoned large (175 m) low sulfur waste rock pile—the dominant mine waste at the site—at the Haizhou coal mine. Laboratory-based static and column leaching tests on waste rock samples were conducted. The static tests were done for 8 composite samples collected from different parts of pile. A column study was performed using mixture of waste rock soil samples to assess metals attenuation process of background soils in vicinity of pile when rainwater reacts with low-sulfide waste rocks. Total concentration of major elements in solid samples was determined using dispersive X-ray fluorescence spectrometry (XRF) and chemical analysis of leachate were measured by inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography and titration methods. The inverse geochemical modeling using PHREEQC was applied to explain possible mass transfer processes between column leachates of waste pile and background soils. Static tests (including acid–base accounting (ABA) and net acid generation (NAG)) and mineralogical information suggest that the waste rock is non-acid generating. The large amount of aluminosilicate minerals and probably trace amounts of carbonates with respect to low sulfur content of waste rock pile represents a potentially large source of neutralization potential according to static test results. It was also found that presence of inherent neutralizing materials in waste rock and also in surrounding background soils provide sufficient neutrality and possibly immobilize the trace and heavy metal contents of waste rocks and potentially protects water resources.  相似文献   

13.
茶废弃物对溶液中重金属的生物吸附研究进展   总被引:12,自引:0,他引:12  
茶废弃物是农业固体废弃物的一个重要组成部分,来源广泛,数量庞大.由于其具有吸附特性,利用茶废弃物作吸附剂去除废水中的重金属受到了国内外学者的广泛关注.本文从影响因素、吸附机理、吸附剂制备和脱附再生等方面综述了茶废弃物吸附去除溶液中重金属的最新研究进展,认为吸附机理、制备、脱附再生、工艺参数和后处理等是今后实现茶废弃物吸附剂工业化应用的主要研究方向.  相似文献   

14.
In order to evaluate the effect of microwave radiation on immobilization of heavy metals (Cu 2 + , Cr 6 + , Zn 2 + and Pb 2 + ) in sediment sludge, leaching tests were run under different test conditions to compare microwave radiation with conventional blast heating and drying process for their effectiveness in immobilizing heavy metals within sediment sludge. Experimental results indicate that microwave radiation can decrease the concentration of heavy metals in leachate by 63% ~ 70% more than conventional blast heating and drying process in an aclinic shake leaching test. Under the same simulated natural water conditions, the concentration of heavy metals in the leachate using microwave radiation is well below the concentration of heavy metals in leachate using conventional blast heating and drying process. It is therefore concluded that microwave radiation is much more effective than conventional blast heating and drying process in immobilizing heavy metals in sediment sludge.  相似文献   

15.
A new peat-based sorbent was evaluated for the capture of heavy metals from waste streams. The media is a pelletted blend of organic humic material targeted for the capture of soluble metals from industrial waste streams and stormwater. The metals chosen for the media evaluation were Cd, Cu, Ni, and Zn due to their occurrence and abundance in waste streams and runoff. Sorption tests included an evaluation of the rate and extent of metals capture by the media, single versus multicomponent metals uptake, pH, anion influence, leaching effects and the effect of media moisture content on uptake rate and capacity. Isotherms of the sorption results showed that the presence of multiple metals increased the total sorption capacity of the media compared to the single component metal capacity; a result of site selectivity within the media. However the capacity for an individual metal in a multicomponent metal matrix was reduced compared to its single component capacity, due to competition for sites. Evidence of ion exchange behavior was observed but did not account for all metals capture. The media also provided a buffering action to counter the pH drop typically associated with metals capture.  相似文献   

16.
The possibility of bioleaching Al, K, Na, Ca and Mg using microorganisms of the Thiobacillus thiooxidans group from industrial waste product (IWP) of copper ore flotation from the company MEDET was studied. The aim of the investigations was to establish the possible application of a combined method for processing IWP. The preliminary mechanical activation in combination with bioleaching resulted in a high extent of extraction of useful components. It was established that the removal of useful components from mechanically activated IWP is improved compared to non‐activated IWP. The effect of the concentration of Al‐containing waste product, of incubation time and time of preliminary mechanical activation on the extraction degree (α) [% w/w] of useful elements was investigated. The maximum degree of extraction of Al was achieved on Day 28 and its value reached 71% for industrial waste product mechanically activated for 4 hours. The maximum degrees of extraction of K and Na in the case of industrial waste product mechanically activated for 4 hours were achieved on Day 7 of the incubation period and their values were 78% and 91%, respectively. Under the conditions of bioleaching only Si had a low degree of extraction, accounting for 2.5%. The ability of microorganisms to leach aluminium could be used for the extraction of metals from nonbauxite raw materials and Al‐containing waste product not treatable by means of the BAYER method.  相似文献   

17.
Abstract

Vermicomposting of phumdi biomass is a good alternative for protecting Loktak Lake and is advantageous for agriculture purposes. Research was carried out on bioavailability and leachability of nutrients (Na, K, Ca and Mg) and heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd and Cr) during vermicomposting of phumdi biomass for 45 days using Eisenia fetida earthworm. The bioavailability of heavy metals was determined in the form of water soluble and diethylene triamine penta-acetic acid (DTPA) extractable. The toxicity characteristic leaching procedure test was performed to determine the leachable heavy metals during the vermicomposting process. The concentration of nutrients increased during the process; whereas the concentration of water soluble, DTPA extractable and leachable heavy metals decreased significantly in all the trials. The vermicomposting of phumdi biomass by Eisenia fetida was very effective for the reduction of bioavailability and leachability of selected heavy metals. The leachability test confirmed that prepared vermicompost is not hazardous for soil, plants and human health. The possibility of using earthworms to mitigate the metal toxicity and to enhance the nutrient profile in phumdi biomass vermicompost, is advantageous in sustainable land renovation practices on a low-input basis.  相似文献   

18.
Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.  相似文献   

19.
A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones—a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results.  相似文献   

20.
徐岩  李静  方文 《生态学报》2022,42(4):1512-1526
2017年起,农业部连续多年出台化肥减量增效行动工作方案,要求适当增加有机肥投入,发展循环农业。但连续施用的有机肥进入土壤后,会对土壤pH、有机质和重金属含量等产生影响,改变土壤重金属行为。科学评估有机肥料施用的影响至关重要。仅通过总含量评估重金属污染风险被认为是片面的,不同化学提取剂提取的重金属含量不能完全代表实际污染状况。地球化学模型具有良好的适用性,比传统的提取方法能够更全面地解释重金属的行为。在集约化农业种植区黄淮海平原,多次施用不同比例的粪源有机肥于旱地菜田,并引入地球化学模型,结合pH依赖性浸出试验,明确连续施肥对菜田土壤重金属行为的主要影响机制。研究发现,有机肥中的铜锌含量远高于土壤中的含量,施用后,它们在土壤中的淋溶浓度随着施用比例增加而显著增加,最多可超过十倍以上,并且活性大大增加,与施肥后溶解性有机物含量的升高呈正相关。不同处理条件下的土壤重金属浸出趋势相似:在中性pH下浸出浓度最低,然后逐渐向强酸和强碱增加,呈现出V型变化。地球化学模型LeachXS展示出较好的模拟结果,其模拟值与实测浓度具有良好的相关性(71.02%)。模拟结果显示,有机肥的施用不会明显改变重金...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号