首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
This work assesses the issue of whether the measured concentrations of heavy metals in soil, rocks, surface and ground waters in Addis Ababa can be related to anthropogenic contamination or natural weathering of rocks. Heavy metal analyses of rocks, soils, streams, springs and boreholes have been carried out to identify the presence of potentially harmful solutes. The maximum concentration of total chromium measured is 269 ppm in the northern, industry-free zone of Addis Ababa in the B 2-horizon of soil profile (cambisol). The Ni/Cr ratio in the rocks is higher than soils, which could indicate the presence of high concentrations of Cr in soils is from weathering processes. A comparative study of different samples collected from various parts of the city indicates that the chemical composition of the hydrothermally affected volcanic rocks plays an important role in increasing heavy metal concentration in the study area. The fresh country rocks contain relatively low concentrations of heavy metals, as shown by background values. The statistical evaluation indicates that the hydrothermally altered rocks contain far higher mean heavy metal concentrations than the fresh acidic rocks (background values). Consequently, soils derived from altered rocks are enriched with respect to heavy metals. From this study it was possible to observe that the rock and soil outcrops of Addis Ababa are anomalously rich in heavy metals derived from hydrothermal activity. Therefore, heavy metal concentrations in the surrounding rocks and soils are related to geogenic sources whereas anthropogenic contribution as a cause of these concentrations is minor.  相似文献   

2.
The “Geita Gold Mine” (GGM) and “North Mara Gold Mines” (NMGM) have developed large quarries in the middle of fertile agricultural lands. Possible hazardous impact on the natural recourse has warranted a study on the trace element concentrations in soils, sediments, and natural waters. Generally, the study shows a great variation in type of elements and intensity of their spill to soils, sediments, and waters. We found indications of acid mine drainage (AMD) of trace metals near the GGM waste rock tailings, but the data are inconclusive. The environmental impact at NMGM was, on the other hand, more extensive. Severe trace element contamination of sediments and waters near one of the mining facilities managed by NMGM is connected to an accidental acid spill in 2009. However, we found strong indication that, in addition to the accident, leakage of alkaline wastewater into surface soils and free water took place from a large wastewater reservoir. We found very high concentrations, especially of As in sediments and water samples downside this reservoir. Water from several sites contained As concentration in the free water at more than one order of magnitude higher than the WHO drinking water recommendations. The chemical speciation of water samples indicated high fraction of Free Ion Activity (FIA) in several samples and the change in pH had a significant impact on the FIA. Due to extensive alkaline and acidic runoff from these sites, more information about hydrological transport routes and the chemical speciation of the free water is of great importance for assessing potential risk of these mines.  相似文献   

3.
The efficiency of surfactant application to improve or inhibit metal solubilization and sulfur oxidation kinetics during the bioleaching of heavy metal-contaminated sediments was studied in suspension-leaching experiments. The river sediment used contained large amounts of fine particles and organic matter. Three types of surfactants were tested: sodium dodecylsulfate (SDS), a C12/14-alkanolethoxylate (Präwozell F1214/5N), and a wettable sulfur (Netz- schwefel 80 WP). Adding 10?mmol SDS/l led to transient inhibition of acidification, metal solubilization and sulfur oxidation. Inhibiting bioleaching for just 14?days required about ten times more SDS than the amount used for mine waste mitigation. The use of Präwozell resulted in poor inhibition; and using of wettable sulfur did not improve leaching efficiency. The bulk of these surfactants was sorbed onto the solid particles immediately on application, while the remainder in the aqueous phase disappeared within a few days.  相似文献   

4.
Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and14CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.  相似文献   

5.
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.  相似文献   

6.
Surface water Selenium (Se) concentrations are above regulatory standards at several active and inactive phosphate mine sites in the US Western Phosphate Resource Area. The focus of the present study was to examine the impacts of the microbial communities on the oxidation state of Se in overburden waste from the Smoky Canyon phosphate mine in Idaho, USA. Microbial populations were found that reduce soluble selenate (SeO42−) to insoluble elemental Se. Microcosm experiments were conducted for molecular genetic analysis of this microbial community by rRNA gene profiling. An acetone pretreatment step was developed to remove interfering pre-petroleum hydrocarbons from the samples prior to extraction. PCR was used to amplify 16S and 18S rRNA genes present in the microbial community DNA. The amplified products were subjected to denaturing gradient gel electrophoresis (DGGE). Isolates and excised DGGE bands were amplified and sequenced for identification to determine the relative importance of culturable isolates to the total microbial population. Analysis of samples from different sites at the mine showed how Se contamination and previous remediation treatments changed the microbial populations across the site. Members of the family Enterobacteriaceae were dominant among the selenate reducing isolates from the site containing high Se levels. In particular, Serratia fonticola was isolated repeatedly from contaminated Smoky Canyon Mine site samples. Packed column studies were performed with seleniferous waste rock fractions from Smoky Canyon Mine. Column amendments consisted of combinations of iron, compost, and whey. Eh, pH, and extractable Se measurements were taken. Tests with infiltrated water showed columns containing an organic amendment combined with iron metal were the most resistant to Se leaching. Iron-based compounds from the corroding metal are thought to strongly bind the Se reduced by microbial activity, thereby stabilizing the Se in an insoluble form. We conclude that long-term stabilization of selenium at contaminated mine sites may require reductive microbial processes combined with abiotic immobilization by iron, either natural or engineered, to stabilize the Se and retard re-oxidation and release. Iron-selenide or iron-selenite compounds are more stable and resistant to leaching, especially when removed from active weathering.  相似文献   

7.
Sulphide mineral mining together with improperly contained sulphur-rich coal represents a significant environmental problem caused by leaching of toxic material. The Savannah River Site's D-area harbours a 22-year-old exposed reject coal pile (RCP) from which acidic, metal rich, saline runoff has impacted an adjacent forested wetland. In order to assess the bacterial community composition of this region, composite sediment samples were collected at three points along a contamination gradient (high, middle and no contamination) and processed for generation of bacterial and archaeal 16S rDNA clone libraries. Little sequence overlap occurred between the contaminated (RCP samples) and unimpacted sites, indicating that the majority of 16S rDNAs retrieved from the former represent organisms selected by the acidic runoff. Archaeal diversity within the RCP samples consisted mainly of sequences related to the genus Thermoplasma and to sequences of a novel type. Bacterial RCP libraries contained 16S rRNA genes related to isolates (Acidiphilium sp., Acidobacterium capsulatum, Ferromicrobium acidophilium and Leptospirillum ferrooxidans) and environmental clones previously retrieved from acidic habitats, including ones phylogenetically associated with organisms capable of sulphur and iron metabolism. These libraries also exhibited particularly novel 16S rDNA types not retrieved from other acid mine drainage habitats, indicating that significant diversity remains to be detected in acid mine drainage-type systems.  相似文献   

8.
Various treatments have been proposed to attenuate and eventually inhibit the generation of acid mine drainage (AMD) or acid-rock drainage (ARD). The addition of Natural Phosphate Rocks (NPR) to mining wastes has been shown to reduce acid generation. The biogeochemical reactions underlying the phosphate precipitation reactions are however poorly understood, even though the chemical reactions are well defined. The present study was designed to study the role of solution chemistry and bacterial activity on phosphate precipitation on waste rock surfaces. Waste rock samples (rich in sulphides) previously weathered for 989 days in the presence of NPR were submersed in 2 different phosphate-rich growth media in order to enhance the growth of acidophilic and neutrophilic bacteria. DAPI and FISH analyses revealed that most cells belonged to the bacteria domain, and that alpha- and beta-proteobacteria were the dominant neutrophiles. ESEM, SEM and TEM observations of the samples revealed the presence of a biofilm on the surface of the rocks at both pH conditions. Bacteria and fine-grained precipitates were trapped in an exopolymer matrix. At low pH, the formation of fine precipitates rich in Fe and P within the biofilm corresponded to a decline of phosphate concentrations in the growth medium. This was in agreement with the solubility calculations which indicated that the medium became over-saturated with respect to some Fe-phosphate minerals. In the pH neutral system, solubility calculations indicated that Ca- and Mg-phosphate minerals were stable, but they were not detected in the biofilm. Solubility calculations also indicated that vivianite became unstable over time, which could explain the release of soluble phosphate over time in the pH neutral system. Our results showed that precipitation reactions played an important role in the solubility of phosphate in both systems, but a series of complex nucleation reactions involving bacterial exopolymers and the presence of microenvironments within the biofilms were likely important factors as well. Our findings also imply that the reduction of acid generation in NPR-treated waste rocks could be due in part to the formation of biofilms on the rock surfaces because the biofilms would act as a physical and chemcial barrier to limit the extent of pyrite oxidation.  相似文献   

9.
In-situ remediation is a practical approach to remediate soils contaminated with heavy metals. The MnFe2O4 microparticles (MM) were prepared for the in-situ remediation of contaminated soils from a lead–zinc polymetallic mine in Inner Mongolia province, China. The effects of MM dosage, pH on remediation efficiency, were determined with static vibration leaching experiment, and the release risk of heavy metals of treated soil was studied by column leaching experiment. The results showed that the leached Cu, Pb, Zn, and As concentration decreased drastically with increasing MM dosage, when the dosage was lower than 10 g/kg. Moreover, the decrease of pH caused increase of leached concentration of Cu, Pb, Zn, but slight decrease of leached As concentration. For the amended soil, concentrations of leached heavy metals were lower than Grade III limit of Chinese Environmental Quality Standards for Ground and Surface water (GB3838-2002) under simulated acid rain leaching condition. In comparison with non-amended soils, the total amount of Cu, Pb, Zn, and As release from amended soils was reduced by 93.6%, 69.2%, 57.0%, and 99.7%, respectively. The MM is a kind of promising amendment for heavy metals contaminated soil.  相似文献   

10.
The chemolithotrophic bacterium Thiobacillus ferrooxidans   总被引:6,自引:0,他引:6  
Abstract: The iron-oxidizing bacterium ThiobaciUus ferrooxidans is the most important microorganism in mineral leaching. It plays the dominant role in bioextractive processes because of its ability to oxidize both iron and reduced sulfur compounds. T. ferrooxidans is also an important microorganism in acid rock/mine drainage, a serious environmental problem. In this article, the current status of this bacterium is described with particular emphasis on the biomining industry.  相似文献   

11.
Acid mine drainage pollution may be associated with large water volume flows and exceptionally long periods of time over which the drainage may require treatment. While the use and role of sulphate reducing bacteria has been demonstrated in active treatment systems for acid mine drainage remediation, reactor size requirement and the cost and availability of the carbon and electron donor source are factors which constrain process development. Little attention has focussed on the use of waste stabilisation ponding processes for acid mine drainage treatment. Wastewater ponding is a mature technology for the treatment of large water volumes and its use as a basis for appropriate reactor design for acid mine drainage treatment is described including high rates of sulphate reduction and the precipitation of metal sulphides. Together with the co-disposal of organic wastes, algal biomass is generated as an independent carbon source for SRB production. Treatment of tannery effluent in a custom-designed high rate algal ponding process, and its use as a carbon source in the generation and precipitation of metal sulphides, has been demonstrated through piloting to the implementation of a full-scale process.The treatment of both mine drainage and zinc refinery wastewaters are reported. A complementary role for microalgal production in the generation of alkalinity and bioadsorptive removal of metals has been utilised and an Integrated 'Algal Sulphate Reducing Ponding Process for the Treatment of Acidic and Metal Wastewaters' (ASPAM) has been described.  相似文献   

12.
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soil amendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1,1,10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05, 0.25, 0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (approximately soluble fraction), extraction with 1 M NH4OAc at pH 7 (approximately exchangeable fraction), and extraction with 0.5 M NH4OAc + 05 M HOAc + 0.02 M EDTA at pH 4.65 (approximately potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but a strong exponential decrease of labile metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annuus will be presented.  相似文献   

13.
In studies of trace elements in biological tissue, it is imperative that sample handling does not substantially change element concentrations. In many cases, fresh tissue is not available for study, but formalin-fixed tissue is. Formalin fixation has the potential to leach elements from the tissue, but few studies have been published in this area. The concentrations of 19 elements were determined by high-resolution inductively coupled plasma mass spectrometry in formalin in which human and rat brain samples had been stored for different time durations ranging from weeks up to several years. Additional analysis was carried out in fixed brain samples. There was substantial leaching of elements from the tissue into the formalin, and the leaching varied considerably between different elements. For example, formalin concentrations of As, Cd, Mg, Rb, and Sb increased more than 100-fold upon long-term (years) storage, while for Ni and Cr, the leaching was negligible. The degree of leaching was strongly time-dependent. In conclusion, formalin fixation and storage of biological tissue has the potential to leach substantial fractions of several trace elements from the tissue. The potential of leaching must be critically considered when using formalin-fixed biological tissue in trace metal analysis.  相似文献   

14.
Zier  Nadja  Schiene  Rainer  Koch  Helmut  Fischer  Klaus 《Plant and Soil》1999,213(1-2):241-250
Soils disturbed by long-term opencast mining were treated with organic waste materials for reclamation. Humic substances were extracted from waste and soil samples and analysed using pyrolysis-gas chromatography/mass spectrometry and electrofocusing. Furthermore, analytical pyrolysis permits to study all starting materials in situ. According to structural similarities, the statistical evaluation of the pyrolysis results clearly indicates three sample groups. The first group, called compost, implies the waste materials compost and composted sewage sludge. Moreover, pyrolysis revealed that coal humic substances are predominant in brown coal sludge, pure mine soils and mine soils treated with the different organic waste materials. They constitute the second group. The sewage sludge contains a high nitrogen potential, as expected, and represents the third group. Finally, pyrolysis generally showed the specific structural characteristics of humic and fulvic acids, respectively. Electrofocusing yielded for all samples a signal pattern that is typical of humic substances. However, number and ratio of the signals differ according to the special structural features of the samples. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
In order to extract copper metal from the waste dump of Dexing copper mine and resolve the environmental problems caused by acidic water and heavy metals, a dump bioleaching plant was designed based on a series of experimental investigations. The investigation shown that the low-grade of the dump, refractoriness of chalcopyrite, leakage of pad, small Acidithiobacillus population and low dump permeability are the main factors that contribute to the challenges faced by the plant. Stability of the high and steep slope of the dump is the other hidden danger to which much attention is not paid. To evaluate the potential unstability of the dump, the leaching process, ore surface erosion, particle size, chemical elements and mechanical properties of the waste rock in DCM were investigated through experiment in this paper.  相似文献   

16.
The acid mine waters (pH 2.0–2.4) discharged from the Matsuo sul‐fur‐pyrite mine contained high concentrations of dissolved inorganic arsenic (2–13 ppm). Arsenic in the superficial acid mine waters was predominantly in the (V) state (arsenate); however, the element in the water from a deep mine drift was almost in the (III) state (arsenite). Microbial arsenite oxidation occurred in the acid mine waters and along the stream of the river, which was contaminated with a large volume of the mine drift water. Arsenite (500 ppm As)‐resistant bacteria (0–27 colonies/ml) were detected in the water samples and 208 slant cultures were obtained. Arsenite‐oxidizing activities of all the cultures were determined and six strains with strong arsenite‐oxidizing activity were isolated. These bacteria were acidophilic (optimum growth pH, 3—4), gram‐negative, aerobic, and rod‐shaped. They could not oxidize ferrous iron and elemental sulfur as a sole energy source and not derive the energy for chemoautotrophic growth from arsenite oxidation.  相似文献   

17.
A long-term greenhouse column experiment using two soils of different textures amended with dewatered, composted and alkaline-stabilized sludges (biosolids) tested the effect of aging on trace metal solubility, mobility and crop uptake over 15 cropping cycles. Specifically, soil chemical properties and extractability of Cu, Zn and Mo were measured after each cropping cycle, and soybeans (Glycine max (L.) Merr.) grown as the final crop were analyzed for those metal concentrations in the seeds. Significant Cu loss from the surface soil through leaching, and increased Zn extractability resulting from soil acidification were evident in the early cropping cycles shortly after sludge application, with the degree of Cu mobilization and soil acidification strongly dependent on the type of soil and sludge. Liming to counter acidification in later cycles enhanced Mo extractability and bioavailability substantially, with some sludge treatments producing soybean seeds with Mo concentrations up to 5 times greater than the control. Aging effects were difficult to discern for trace metals in this long-term study, since soil pH changes caused by sludge and liming amendments dominated metal solubility and crop uptake.  相似文献   

18.
At the Diavik Waste Rock Project's mine-research site, the microbial colonization and oxidation of waste rock sulfide minerals are attenuated by the extreme freeze-thaw cycle of a permafrost environment. The closure design for the waste rock stockpile consists of a low-sulfide waste rock and low-permeability till, covering a relatively higher sulfide waste rock. This design was examined at the mine site through construction of experimental waste rock piles and active zone lysimeters with and without the till cover. Leachate from these experiments indicates variable pH and SO4 concentrations that correlate with sulfide content and the thermal moderating influence of the till cover. The till initially provided a moderated environment for the production of acid, growth of acidophilic Fe- and S-oxidizing bacteria, and enhanced weathering until wet up and freezing of the till and underlying waste rock as a permafrost. Greater sulfide oxidation was observed above the till cover because of greater exposure to the annual freeze-thaw cycle. An examination of the bacterial communities at the genus level indicates the prevalence of Pseudomonas, Rhodanobacter, Sideroxydans, and Thiobacillus in the waste rock. Pseudomonas spp. were dominant in the drier and more extreme temperature environment above the till cover, while Thiobacillus spp. were dominant in the more sulfide-rich, wetter/frozen environment below the till. A decreasing trend in Thiobacillus spp. from the exterior to the interior and an opposing trend in Acidithiobacillus spp. suggest greater acid generation deeper in the waste rock further from the extreme temperature variation of the tundra climate. The presence of the till cover moderated temperature variations, enhanced the initial rate of sulfide oxidation, and allowed for greater microbial diversity, but the freezing of the till cover and underlying waste rock drastically reduced sulfide oxidation and the generation of acid rock drainage. These results highlight the importance of temperature on microbially catalyzed acid production and our ability to use the extreme temperatures of the tundra climate to minimize potential environmental effects from mining through formation of waste rock permafrost.  相似文献   

19.
Heavy metal leaching from mine tailings as affected by organic amendments   总被引:3,自引:0,他引:3  
A column experiment was conducted to investigate Zn, Cd, and Pb leaching from mine tailings as affected by the addition of organic amendments. Composted yard waste, composted cattle manure, and cattle manure aged for one month increased heavy metal leaching from mine tailings when compared to an unamended control. Aged cattle manure and composted cattle manure significantly increased Zn concentration in the leachate. The maximum Zn concentration in leachate from the manure-amended treatments was as high as 3.7 mg/L, whereas Zn concentrations from the control were less than 0.7 mg/L. All organic amendments increased Cd leachate concentrations. The presence of aged cattle manure greatly increased Pb concentrations in the leachate from less than 10 microg/L for the control treatment to higher than 60 microg/L. Lead concentration in leachate was positively correlated with inorganic carbon, total organic carbon, total carbon and bicarbonate. Although organic amendments increased Zn, Cd, and Pb leaching when compared with the control treatment, Zn concentrations were lower than the 5 mg/L secondary drinking water standard, and Pb concentrations were only minimally higher than the 15 microg/L drinking water standard. Cadmium concentrations from manure treatments exceeded the 5 microg/L drinking water standard but only during the first 15 days. Organic amendments may encourage establishment of vegetation in mining areas that may minimize heavy metal contamination through runoff and erosion. However, increased risk due to heavy metal leaching in the presence of organic amendments should be carefully considered.  相似文献   

20.
Extraction and processing of cassiterite (SnO2) left large tailings with high concentrations of tin, tungsten, molybdenum and lithium. Information on the phytotoxicity of mine waste is important with regard to ecological hazards. Exposure studies help to identify plants useful for the stabilization of waste tips and the phytomining of metals. A greenhouse study was performed using a dilution series of mine waste and four crops, a halophytic and a metallophytic species to derive dose response curves. Based on effective doses for growth reductions, sensitivity increased in the following order: maize > common buckwheat > quinoa > garden bean. Element analyses in different species and compartments of common buckwheat grown in a mixture of standard soil and 25% of the mine waste showed that only low levels of the metals were taken up and that transfer to seed tissues was negligible. As indicated by soil metal levels prior to and after the experiment, only lithium and arsenic proved to be plant available and reached high levels in green tissues while seed levels were low. The experiment confirmed differences in the uptake of metals with regard to elements and species. Common buckwheat is a suited candidate for cultivation on metal polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号