首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms living in gradient environments affect large-scale processes, including the cycling of elements such as carbon, nitrogen or sulfur, the rates and fate of primary production, and the generation of climatically active gases. Aerotaxis is a common adaptation in organisms living in the oxygen gradients of stratified environments. Magnetotactic bacteria are such gradient-inhabiting organisms that have a specific type of aerotaxis that allows them to compete at the oxic-anoxic interface. They biomineralize magnetosomes, intracellular membrane-coated magnetic nanoparticles, that comprise a permanent magnetic dipole that causes the cells to align along magnetic field lines. The magnetic alignment enables them to efficiently migrate toward an optimal oxygen concentration in microaerobic niches. This phenomenon is known as magneto-aerotaxis. Magneto-aerotaxis has only been characterized in a limited number of available cultured strains. In this work, we characterize the magneto-aerotactic behavior of 12 magnetotactic bacteria with various morphologies, phylogenies, physiologies, and flagellar apparatus. We report six different magneto-aerotactic behaviors that can be described as a combination of three distinct mechanisms, including the reported (di-)polar, axial, and a previously undescribed mechanism we named unipolar. We implement a model suggesting that the three magneto-aerotactic mechanisms are related to distinct oxygen sensing mechanisms that regulate the direction of cells’ motility in an oxygen gradient.  相似文献   

2.
Magnetotactic bacteria are characterized by the production of magnetosomes, nanoscale particles of lipid bilayer encapsulated magnetite, that act to orient the bacteria in magnetic fields. These magnetosomes allow magneto-aerotaxis, which is the motion of the bacteria along a magnetic field and toward preferred concentrations of oxygen. Magneto-aerotaxis has been shown to direct the motion of these bacteria downward toward sediments and microaerobic environments favorable for growth. Herein, we compare the magneto-aerotaxis of wild-type, magnetic Magnetospirillum magneticum AMB-1 with a nonmagnetic mutant we have engineered. Using an applied magnetic field and an advancing oxygen gradient, we have quantified the magnetic advantage in magneto-aerotaxis as a more rapid migration to preferred oxygen levels. Magnetic, wild-type cells swimming in an applied magnetic field more quickly migrate away from the advancing oxygen than either wild-type cells in a zero field or the nonmagnetic cells in any field. We find that the responses of the magnetic and mutant strains are well described by a relatively simple analytical model, an analysis of which indicates that the key benefit of magnetotaxis is an enhancement of a bacterium's ability to detect oxygen, not an increase in its average speed moving away from high oxygen concentrations.  相似文献   

3.
It has been postulated that life originated in a similar environment to those of deep sea hydrothermal vents. These environments are located along volcanic ridges and are characterized by extreme conditions such as unique physical properties (temperature, pressure), chemical toxicity, and absence of photosynthesis. However, numerous living organisms have been discovered in these hostile environments, including a variety of microorganisms and many animal species which live in intimate and complex symbioses with sulfo-oxidizing and methanotrophic bacteria. Recent proteomic analyses of the endosymbiont ofRiftia pachyptila and genome sequences of some free living and symbiotic bacteria have provided complementary information about the potential metabolic and genomic capacities of these organisms. The evolution of these adaptive strategies is connected with different mechanisms of genetic adaptation including horizontal gene transfer and . various structural and functional mutations. Therefore, the organisms in this environment are good models for studying the evolution of prokaryotes and eukaryotes as well as different aspects of the biology of adaptation. This review describes some current research concerning metabolic and plausible genetic adaptations of organisms in a deep sea environment, usingRiftia pachyptila as model.  相似文献   

4.
Abstract

Circadian clocks are endogenous time keeping mechanisms that drive near 24-h behavioural, physiological and metabolic rhythms in organisms. It is thought that organisms possess circadian clocks to facilitate coordination of essential biological events to the external day and night (extrinsic advantage) so as to enhance Darwinian fitness. However, on Earth, there are a number of habitats that are not subject to such robust daily cycling of geo-physical factors. Do organisms living under such conditions exhibit rhythmic behaviours that are driven by endogenous circadian clocks? We attempt to critically survey studies of rhythms (or the lack of them) in organisms living in a range of constant environments. Many such organisms do show rhythms in behaviour and/or physiological variables. We suggest that such presence of rhythms may be indicative of an underlying clock that facilitates, (a) internal synchrony among rhythms, and (b) temporal partitioning of incompatible cellular processes (intrinsic advantage). We then highlight reasons that limit our interpretations about the presence (or absence) of clocks in such organisms living under constant conditions, and suggest possible methods to conclusively test whether or not rhythms in these organisms are driven by endogenous circadian clocks with the hope that it may enhance our understanding of circadian clocks in organisms under constant environments.  相似文献   

5.
Copper is a metallic element that is crucial for cell metabolism; however, in extended concentrations, it is toxic for all living organisms. The dual nature of copper has forced organisms, including bacteria, to keep a tight hold on cellular copper content. This challenge has led to the evolution of complex mechanisms that on one hand enable them to deliver the essential element and on the other to protect cells against its toxicity. Such mechanisms have been found in both eukaryotic and prokaryotic cells. In bacteria a number of different systems such as extra- and intracellular sequestration, enzymatic detoxification, and metal removal from the cell enabling them to survive in the presence of high concentration of copper have been identified. Gram-negative bacteria, due to their additional compartment, need to deal with both cytoplasmic and periplasmic copper. Therefore, these bacteria have evolved intricate and precisely regulated systems which interact with each other. In this review the active mechanisms of copper resistance at their molecular level are discussed.  相似文献   

6.
Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni80Fe20) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.  相似文献   

7.
ABSTRACT: BACKGROUND: It has been reported that the modularity of metabolic networks of bacteria is closely relatedto the variability of their living habitats. However, given the dependency of the modularityscore on the community structure, it remains unknown whether organisms achieve certainmodularity via similar or different community structures. RESULTS: In this work, we studied the relationship between similarities in modularity scores andsimilarities in community structures of the metabolic networks of 1021 species. Bothsimilarities are then compared against the genetic distances. We revisited the associationbetween modularity and variability of the microbial living environments and extended theanalysis to other aspects of their life style such as temperature and oxygen requirements. Wealso tested both topological and biological intuition of the community structures identifiedand investigated the extent of their conservation with respect to the taxomony. CONCLUSIONS: We find that similar modularities are realized by different community structures. We findthat such convergent evolution of modularity is closely associated with the number of(distinct) enzymes in the organism's metabolome, a consequence of different life styles ofthe species. We find that the order of modularity is the same as the order of the number ofthe enzymes under the classification based on the temperature preference but not on theoxygen requirement. Besides, inspection of modularity-based communities reveals thatthese communities are graph-theoretically meaningful yet not reflective of specificbiological functions. From an evolutionary perspective, we find that the communitystructures are conserved only at the level of kingdoms. Our results call for moreinvestigation into the interplay between evolution and modularity: how evolution shapesmodularity, and how modularity affects evolution (mainly in terms of fitness andevolvability). Further, our results call for exploring new measures of modularity andnetwork communities that better correspond to functional categorizations.  相似文献   

8.
In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe(3+) on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments.  相似文献   

9.
《Journal of molecular biology》2019,431(15):2810-2820
The ability to perceive oxygen levels is crucial to many organisms because it allows discerning environments compatible with aerobic or anaerobic metabolism, as well as enabling rapid switch between these two energy strategies. Organisms from different taxa dedicate distinct mechanisms to associate oxygen fluctuations with biological responses. Following from this observation, we speculated that orthogonal oxygen sensing devices can be created by transfer of essential modules from one species to another in which they are not conserved. We expressed plant cysteine oxidase (PCOs) enzymes in Saccharomyces cerevisiae, to confer oxygen-conditional degradability to a bioluminescent protein tagged with the Cys-exposing N-degron typical of plant ERF-VII factors. Co-translation of a second luciferase protein, not subjected to oxygen-dependent proteolysis, made the resulting Double Luciferase Oxygen Reporter (DLOR) ratiometric. We show that DLOR acts as a proxy for oxygen dynamics in yeast cultures. Moreover, since DLOR activity was enabled by the PCO sensors, we employed this device to disclose some of their properties, such as the dispensability of nitric oxide for N-terminal cysteine oxidation and the individual performance of Arabidopsis PCO isoforms in vivo. In the future, we propose the synthetic DLOR device as a convenient, eukaryotic cell-based tool to easily screen substrates and inhibitors of cysteine oxidase enzymes in vivo. Replacement of the luminescent proteins with fluorescent proteins will further turn our system into a visual reporter for oxygen dynamics in living cells.  相似文献   

10.
Nitrite is a pivotal component of the marine nitrogen cycle. The fate of nitrite determines the loss or retention of fixed nitrogen, an essential nutrient for all organisms. Loss occurs via anaerobic nitrite reduction to gases during denitrification and anammox, while retention occurs via nitrite oxidation to nitrate. Nitrite oxidation is usually represented in biogeochemical models by one kinetic parameter and one oxygen threshold, below which nitrite oxidation is set to zero. Here we find that the responses of nitrite oxidation to nitrite and oxygen concentrations vary along a redox gradient in a Pacific Ocean oxygen minimum zone, indicating niche differentiation of nitrite-oxidizing assemblages. Notably, we observe the full inhibition of nitrite oxidation by oxygen addition and nitrite oxidation coupled with nitrogen loss in the absence of oxygen consumption in samples collected from anoxic waters. Nitrite-oxidizing bacteria, including novel clades with high relative abundance in anoxic depths, were also detected in the same samples. Mechanisms corresponding to niche differentiation of nitrite-oxidizing bacteria across the redox gradient are considered. Implementing these mechanisms in biogeochemical models has a significant effect on the estimated fixed nitrogen budget.Subject terms: Biogeochemistry, Water microbiology, Microbial ecology  相似文献   

11.
Unlike simpler organisms, C. elegans possesses several distinct chemosensory pathways and chemotactic mechanisms. These mechanisms and pathways are individually capable of driving chemotaxis in a chemical concentration gradient. However, it is not understood if they are redundant or co-operate in more sophisticated ways. Here we examine the specialisation of different chemotactic mechanisms in a model of chemotaxis to NaCl. We explore the performance of different chemotactic mechanisms in a range of chemical gradients and show that, in the model, far from being redundant, the mechanisms are specialised both for different environments and for distinct features within those environments. We also show that the chemotactic drive mediated by the ASE pathway is not robust to the presence of noise in the chemical gradient. This problem cannot be solved along the ASE pathway without destroying its ability to drive chemotaxis. Instead, we show that robustness to noise can be achieved by introducing a second, much slower NaCl-sensing pathway. This secondary pathway is simpler than the ASE pathway, in the sense that it can respond to either up-steps or down-steps in NaCl but not both, and could correspond to one of several candidates in the literature which we identify and evaluate. This work provides one possible explanation of why there are multiple NaCl sensing pathways and chemotactic mechanisms in C. elegans: rather than being redundant the different pathways and mechanism are specialised both for the characteristics of different environments and for distinct features within a single environment.  相似文献   

12.
The Evolution of Oxygen As a Biosynthetic Reagent   总被引:1,自引:0,他引:1  
The biosynthesis of certain cell constituents: monounsaturated fatty acids, tyrosine, and nicotinic acid, is oxygen-dependent in many higher organisms. The same compounds can be synthesized by different, oxygen-independent pathways in lower organisms. The general outlines of these pathways are described and the importance of the compounds synthesized is discussed. An examination of the distribution of these pathways among living organisms reveals that oxygen-dependent pathways replaced the "anaerobic" pathways at different branch points on the evolutionary tree. Other groups of compounds are discussed, which are not distributed as widely among living organisms, but are found in all higher organisms. These compounds have specialized functions and their biosynthesis requires molecular oxygen. The oxygen-dependent portions of the biosynthetic pathways leading to porphyrins, quinone coenzymes, carotenoids, sterols, and polyunsaturated fatty acids are summarized. The distribution and functions of these compounds are also considered and an attempt is made to place them in the framework of evolution. While sterols and polyunsaturated fatty acids are found exclusively in the higher Protista and multicellular organisms, carotenoids, porphyrins, and quinones are also found in bacteria. The possibility of oxygen-independent mechanisms for their biosynthesis is discussed.  相似文献   

13.
The deep-sea hydrothermal vents are located along the volcanic ridges and are characterized by extreme conditions such as unique physical properties (temperature, pression), chemical toxicity, and absence of photosynthesis. However, life exists in these particular environments. The primary producers of energy and organic molecules in these biotopes are chimiolithoautotrophic bacteria. Many animals species live in intimate and complex symbiosis with these sulfo-oxidizing and methanogene bacteria. These symbioses imply a strategy of nutrition and a specific metabolic organization involving numerous interactions and metabolic exchanges, between partners. The organisms of these ecosystems have developed different adaptive strategies. In these environments many microorganisms are adapted to high temperatures. Moreover to survive in these environments, living organisms have developed various strategies to protect themselves against toxic molecules such as H2S and heavy metals.  相似文献   

14.
细菌的运动性是影响其生存及致病的一个关键条件,同时也为合成和开发仿生运动体、微型机器人等提供了有效的模型。趋磁细菌具有胞内磁小体从而能够感知磁场的变化,进而影响其运动行为。目前,这种外部磁场与生物体的远程响应模式已在环境、医疗、材料等领域有广泛应用。因此,聚焦于趋磁细菌的运动特性,综述了趋磁细菌运动行为的表征、运动机理以及应用等方面的最新研究进展,并对该领域的发展和面临的挑战进行了展望。  相似文献   

15.
Magnetite-based magnetoreception   总被引:8,自引:0,他引:8  
Orientation, navigation, and homing are critical traits expressed by organisms ranging from bacteria through higher vertebrates. Sensory systems that aid such behavior have provided key selective advantages to these groups over the past 4 billion years, and are highly evolved; magnetoreception is no exception. Across many species and groups of organisms, compelling evidence exists that the physical basis of this response is tiny crystals of single-domain magnetite (Fe3O4). It is the opinion of the authors that all magnetic field sensitivity in living organisms, including elasmobranch fishes, is the result of a highly evolved, finely-tuned sensory system based on single-domain, ferromagnetic crystals.  相似文献   

16.
Multiple mechanisms controlling carbon metabolism in bacteria   总被引:13,自引:0,他引:13  
Catabolite repression is a universal phenomenon, found in virtually all living organisms. These organisms range from the simplest bacteria to higher fungi, plants, and animals. A mechanism involving cyclic AMP and its receptor protein (CRP) in Escherichia coli was established years ago, and this mechanism has been assumed by many to serve as the prototype for catabolite repression in all organisms. However, recent studies have shown that this mechanism is restricted to enteric bacteria and their close relatives. Cyclic AMP-independent mechanisms of catabolite repression occur in other bacteria, yeast, plants, and even E. coli. In fact, single-celled organisms such as E. coli, Bacillus subtilis, and Saccharomyces cerevisiae exhibit multiple mechanisms of catabolite repression, and most of these are cyclic AMP-independent. The mechanistic features of the best of such characterized processes are briefly reviewed, and references are provided that will allow the reader to delve more deeply into these subjects.  相似文献   

17.
Magneto-aerotaxis in marine coccoid bacteria.   总被引:10,自引:0,他引:10  
Magnetotactic cocci swim persistently along local magnetic field lines in a preferred direction that corresponds to downward migration along geomagnetic field lines. Recently, high cell concentrations of magnetotactic cocci have been found in the water columns of chemically stratified, marine and brackish habitats, and not always in the sediments, as would be expected for persistent, downward-migrating bacteria. Here we report that cells of a pure culture of a marine magnetotactic coccus, designated strain MC-1, formed microaerophilic bands in capillary tubes and used aerotaxis to migrate to a preferred oxygen concentration in an oxygen gradient. Cells were able to swim in either direction along the local magnetic field and used magnetotaxis in conjunction with aerotaxis, i.e., magnetically assisted aerotaxis, or magneto-aerotaxis, to more efficiently migrate to and maintain position at their preferred oxygen concentration. Cells of strain MC-1 had a novel, aerotactic sensory mechanism that appeared to function as a two-way switch, rather than the temporal sensory mechanism used by other bacteria, including Magnetospirillum megnetotacticum, in aerotaxis. The cells also exhibited a response to short-wavelength light (< or = 500 nm), which caused them to swim persistently parallel to the magnetic field during illumination.  相似文献   

18.
Magnetotactic bacteria are microaerophilic organisms found in sediments or stratified water columns at the oxic-anoxic transition zone or the anoxic regions below. They use magnetite-filled membrane vesicles, magnetosomes, to passively align with, and actively swim along, the geomagnetic field lines in a magneto-aerotactic search for the ideal concentration of molecular oxygen. Such an efficient chemotaxis needs magnetosomes that contain nearly perfect magnetite crystals. These magnetosomes originate as invaginations of the inner membrane and the empty vesicles are aligned in a chain by an actin-like protein. Subsequently, the vesicles are filled with iron, which then is converted to magnetite crystals. Until now it was unclear how such a process might be accomplished. In this issue, Uebe et al., 2011 unveil a part of this complicated bio-mineralization process. In Magnetospirillum gryphiswaldense, MamM and MamB, two members of the cation diffusion facilitator (CDF) transport protein family, are required for magnetite formation. MamM increases the stability of MamB by forming a heterodimer. The MamBM heterodimer strongly influences the biomineralization process by controlling the size and the shape of the crystals, and even the nature of the formed iron mineral. Thus, these two CDF proteins not only transport iron, but they also control the magnetite biomineralization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号