首页 | 本学科首页   官方微博 | 高级检索  
   检索      


How iron is transported into magnetosomes
Authors:Nies Dietrich H
Institution:Inst. Microbiology, University of Halle, Kurt-Mothes-Str. 3, Halle/Saale 06099, Germany. d.nies@mikrobiologie.uni-halle.de
Abstract:Magnetotactic bacteria are microaerophilic organisms found in sediments or stratified water columns at the oxic-anoxic transition zone or the anoxic regions below. They use magnetite-filled membrane vesicles, magnetosomes, to passively align with, and actively swim along, the geomagnetic field lines in a magneto-aerotactic search for the ideal concentration of molecular oxygen. Such an efficient chemotaxis needs magnetosomes that contain nearly perfect magnetite crystals. These magnetosomes originate as invaginations of the inner membrane and the empty vesicles are aligned in a chain by an actin-like protein. Subsequently, the vesicles are filled with iron, which then is converted to magnetite crystals. Until now it was unclear how such a process might be accomplished. In this issue, Uebe et al., 2011 unveil a part of this complicated bio-mineralization process. In Magnetospirillum gryphiswaldense, MamM and MamB, two members of the cation diffusion facilitator (CDF) transport protein family, are required for magnetite formation. MamM increases the stability of MamB by forming a heterodimer. The MamBM heterodimer strongly influences the biomineralization process by controlling the size and the shape of the crystals, and even the nature of the formed iron mineral. Thus, these two CDF proteins not only transport iron, but they also control the magnetite biomineralization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号