首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly pathogenic avian influenza virus (HPAI) H5N1 poses a serious threat to domestic animals. Despite the large number of studies on influenza A virus in waterbirds, little is still known about the transmission dynamics, including prevalence, behavior, and spread of these viruses in the wild waterbird population. From January to April 2006, the HPAI H5N1 virus was confirmed in 82 dead wild waterbirds at the shores of Lake Constance. In this study, we present simple mathematical models to examine this outbreak and to investigate the transmission dynamics of HPAI in wild waterbirds. The population dynamics model of wintering birds was best represented by a sinusoidal function. This model was considered the most adequate to represent the susceptible compartment of the SIR model. The three transmission models predict a basic reproduction ratio (R 0) with value of approximately 1.6, indicating a small epidemic, which ended with the migration of susceptible wild waterbirds at the end of the winter. With this study, we quantify for the first time the transmission of HPAI H5N1 virus at Lake Constance during the outbreak of winter 2005–2006. It is a step toward the improvement of the knowledge of transmission of the virus among wild waterbirds.  相似文献   

2.
Invasive species often influence existing biocenoses by altering their environment or facilitating the ecology of other species. Here we combined stable isotope analysis with quantitative benthic community sampling to investigate temporal variation in the influence of biodeposition of organic material (biodeposits) by the zebra mussel (Dreissena polymorpha) on the benthic food web in hard substrate habitats of Lake Constance, Germany. The accumulation of organic material excreted by zebra mussels (faeces and pseudofaeces) is hypothesised to implement a biodeposition based food web. By means of stable isotope analyses, we found that the feeding strategy of amphipods was dependent on the availability of zebra mussel biodeposits. The proportion of pelagic resources contributing to the diet (by ??13C) and trophic position (by ??15N) of amphipods were significantly and positively correlated to the production of zebra mussel biodeposits. Also, the benthic community in Lower Lake Constance showed a shift towards higher densities of the mayfly Caenis spp., Chironominae, and the caddisfly Ecnomus tenellus, which might act as links to higher trophic levels when more zebra mussel biodeposits were available. These results demonstrate that temporal variation in zebra mussel density, and thus in organic biodeposition, have a strong impact on the benthic communities and food web structure associated with hard substrates to the extent that there may be dependence on zebra mussel occurrence in such habitats in Lake Constance.  相似文献   

3.
SUMMARY 1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g−1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (≤5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra mussel colonisation, but are ultimately unlikely to limit population density because of zebra mussel reproductive potential.  相似文献   

4.
1. In situ exclosure experiments in the Mississippi and Ohio Rivers determined the importance of fish predation in regulating zebra mussels (Dreissena polymorpha), an increasingly important constituent of the benthic invertebrate assemblages in both rivers. 2. We evaluated the effects of predatory fish on the density, biomass and size distribution of zebra mussels in a floodplain reach of the upper Mississippi River and in a naturally constrained reach of the Ohio River. Fifty, six-sided, predator-exclusion cages and fifty ‘partial’ cages (mesh at the upstream end only) were deployed, with half the cages containing willow snags and half clay tiles suspended 12–16 cm above the bottom. A single snag or tile sample unit was removed from each cage at approximately monthly intervals from July to October 1994. Types and relative abundances of molluscivorous fish were evaluated by electrofishing near the cages in both rivers. Actual and potential recruitment of young zebra mussels on to the substrata were measured using benthic samples in both rivers and estimated (Ohio River only) from counts of planktonic veligers. 3. Zebra mussels were consumed by at least three fish species in the upper Mississippi River (mostly carp, Cyprinus carpio, and redhorse suckers, Moxostoma sp.) and five species in the Ohio River (primarily smallmouth buffalo, Ictiobus bubalus, and channel catfish, Ictalurus punctatus), but potential recruitment seemed adequate to replace consumed mussels, at least in the Ohio River. The number of juvenile benthic mussels showed no apparent link with the density of veligers soon after initiation of reproduction. Recruitment of juveniles on snags and tiles was not affected by cage type (thus eliminating a potentially confounding ‘cage effect’). 4. Fish significantly influenced mussel populations, but the impact was often greatest among low density populations in the upper Mississippi. Density and biomass differed in both rivers for cage type (higher inside cages), substratum (greater on tiles), and date (increased over time). Presumed size-selective predation was present in the Mississippi (greater on larger size classes) but was not evident in the Ohio. We hypothesize that fish in the Mississippi can more easily select larger prey from the low density populations; whereas size-selective predation on tightly packed zebra mussels in the Ohio would be difficult. 5. Although fish can reduce numbers of Dreissena polymorpha in the two rivers, current levels of fish predation seem insufficient to regulate zebra mussel densities because of its great reproductive capacity. The recent invasion of zebra mussels, however, could lead to larger fish populations while promoting greater carbon retention and overall ecosystem secondary production.  相似文献   

5.
  • 1 Zebra mussels (Dreissena polymorpha) are successful colonisers of lake littoral habitats and they interact strongly with littoral benthos. Previous research suggests that localised areas colonised by zebra mussels may be hotspots of nitrogen (N) cycling.
  • 2 The effects of zebra mussels on nitrification and denitrification rates were examined approximately every other month for 1 year in Gull Lake, Michigan, U.S.A. Littoral sediment was collected from an area free of zebra mussels and distributed into shallow trays; rocks colonised with zebra mussels were placed in half of the trays, while uncolonised rocks were placed in the remaining trays. After an incubation period of 6–8 weeks in the lake, sediment and zebra mussels were collected from the trays, replaced with new sediment and zebra mussels, and placed in the lake for the next interval. In the laboratory, sediment nitrification and denitrification rates were measured for each tray.
  • 3 Sediment nitrification rates did not increase in the presence of zebra mussels; instead nitrification rates were sensitive to changes in water temperature and increased with increasing exchangeable sediment ammonium. In contrast, denitrification rates increased in sediment trays with zebra mussels in the winter when nitrate (NO3) availability was high and when Chara did not grow in the trays.
  • 4 Sediment denitrification was NO3‐limited in all seasons, regardless of zebra mussel treatment. However, sediment in the presence of zebra mussels responded less to NO3 addition, suggesting that NO3 limitation of denitrification can be reduced by zebra mussel activity. Zebra mussels have a seasonally variable impact on sediment denitrification rates, and this may translate into altered seasonal patterns of N cycling in localised areas of lakes where they are particularly abundant.
  相似文献   

6.
Species interactions between two types of sessile benthic invertebrates, the zebra mussel (Dreissena polymorpha) and freshwater sponges (Porifera), were evaluated in Michigan City IN Harbor in southern Lake Michigan during 1996. The study objective was to define whether competition plays a role in structuring benthic communities using experimental techniques commonly employed in marine systems. Sponges were uninhibited by zebra mussel presence and overgrew zebra mussel shells on hard vertical substrata. In contrast, zebra mussels did not overgrow sponge colonies, but did show an ability to re-capture hard substrata if relinquished by the sponge. The negative affect of sponges on zebra mussels through overgrowth and recruitment suggests interactions that could eventually displace zebra mussels from these benthic communities. However, seasonal reduction of sponge biomass from autumn through winter appears to allow the zebra mussel a periodic respite from overgrowth, preventing exclusion of zebra mussels from the community and allowing these two taxa to co-exist.  相似文献   

7.
The enemy release hypothesis states that invasive species are successful in their new environment because native species are not adapted to utilize the invasive. If true for predators, native predators should have lower feeding rates on the invasive species than a predator from the native range of the invasive species. We tested this hypothesis for zebra mussel (Dreissena polymorpha) by comparing handling time and predation rate on zebra mussels in the laboratory by two North American species (pumpkinseed, Lepomis gibbosus, and rusty crayfish, Orconectes rusticus) and one predator with a long evolutionary history with zebra mussels (round goby, Neogobius melanostomus). Handling time per mussel (7 mm shell length) ranged from 25 to >70 s for the three predator species. Feeding rates on attached zebra mussels were higher for round goby than the two native predators. Medium and large gobies consumed 50–67 zebra mussels attached to stones in 24 h, whereas pumpkinseed and rusty crayfish consumed <11. This supports the hypothesis that the rapid spread of zebra mussels in North America was facilitated by low predation rates from the existing native predators. At these predation rates and realistic goby abundance estimates, round goby could affect zebra mussel abundance in some lakes.  相似文献   

8.
1. Recent increases in phytoplankton biomass and the recurrence of cyanobacterial blooms in western Lake Erie, concomitant with a shift from a community dominated by zebra mussels (Dreissena polymorpha) to one dominated by quagga mussels (D. bugensis), led us to test for differences in ammonia‐nitrogen and phosphate‐phosphorus excretion rates of these two species of invasive molluscs. 2. We found significant differences in excretion rate both between size classes within a taxon and between taxa, with zebra mussels generally having greater nutrient excretion rates than quagga mussels. Combining measured excretion rates with measurements of mussel soft‐tissue dry weight and shell length, we developed nutrient excretion equations allowing estimation of nutrient excretion by dreissenids. 3. Comparing dreissenid ammonia and phosphate excretion with that of the crustacean zooplankton, we demonstrated that the mussels add to nitrogen and phosphorus remineralisation, shortening nitrogen and phosphorus turnover times, and, importantly, modify the nitrogen and phosphorus cycles in Lake Erie. The increased nutrient flux from dreissenids may facilitate phytoplankton growth and cyanobacterial blooms in well‐mixed and/or shallow areas of western Lake Erie.  相似文献   

9.
李凌晨  周立志  程磊  姚简  宋昀微 《生态学报》2023,43(18):7731-7745
水鸟是湿地生境质量的重要指示性动物类群,可敏感地反映湿地环境变化。浅水通江湖泊消落带具有复杂多样的生境和丰富的食物资源,是水鸟特别是越冬水鸟的重要聚集区,其食物资源的丰富度和可获得性受水文节律影响。在极端洪水作用下,消落带生境变化对越冬水鸟群落结构及其多样性的影响是一个值得关注的水鸟及湿地生态学问题。选择了具有典型消落带生境的升金湖作为研究区域,对2019年(正常水位)和2020年(异常水位)两个越冬季水鸟的数量、种类进行调查统计,分析了消落带的生境变化情况对越冬水鸟群落结构的影响。2019年越冬期,记录到水鸟(50984.20±9595.71)只(n=5),隶属7目13科51种;2020年越冬期,记录到水鸟(27923.00±13808.47)只(n=5),隶属7目12科53种。整个越冬季消落带的水鸟种类略增但数量减少,2019年游禽中的优势种为豆雁,2020年游禽中的优势种增加为豆雁和斑嘴鸭,但涉禽中的优势种由白琵鹭、反嘴鹬、凤头麦鸡转变为苍鹭、大白鹭和反嘴鹬。洪水导致的草滩-水域混合区生境面积减小使湿生植物退化,可能是导致以豆雁为主的食苔草水鸟数量大幅度减少的重要原因;因湖水延迟...  相似文献   

10.
The zebra mussel (Dreissena polymorpha) and its congener the quagga mussel (Dreissena rostriformis bugensis) are both invaders in freshwater, but have very different invasion histories, with zebra mussels attaining substantially faster rates of spread at virtually all spatial scales. However, in waterbodies where they co-occur, D. r. bugensis can displace D. polymorpha. To determine if the mechanisms for this displacement are associated with different survival and growth, we kept mussels in flow-through tanks for 289 days with two temperature regimes that mimicked the natural surface water (littoral zone) and hypolimnion conditions of Lake Erie. For the littoral zone regime, we used water directly from the surface of Lake Erie (range 4–25°C, average 11.9 ± 0.6°C). For the profundal zone treatment, Lake Erie surface water was chilled to about 6°C (range 5–8°C, average 6.2 ± 0.6°C) for the full duration of the experiment. For each of these temperature regimes, we used three replicate tanks with only zebra mussels present and three replicate tanks with only quagga mussels (150 ind./tank each), and three replicate tanks with both species (75 ind./tank of each species). Quagga mussels had higher survivorship and grew more than zebra mussels in all treatments. For both species, the size of the mussel entering the winter was critical for survivorship. Larger mussels had a higher survival over the winter in all treatments. For both species, there was a survivorship and growth tradeoff. In the warmer littoral zone treatment both species had higher growth, but lower survival than in the colder profundal zone treatment. Surprisingly, although quagga mussels outperformed zebra mussels, zebra mussel survivorship was better when they were faced with competition by quagga mussels than with just intraspecific competition. In addition, quagga mussels suffered size-specific mortality during the growing season only when facing interspecific competition with zebra mussels. Further experiments are needed to determine the possible mechanisms for these interspecific effects.  相似文献   

11.
Owing to synchronous moult, most waterbird species are constrained by flightlessness and limited mobility for several weeks. As new feather production is energy demanding, these birds need to choose a safe moulting site with appropriate food supply. Up to 20,000 waterbirds carry out moult at Lake Constance, gathering at sites where they find food close to safe hiding places from predators and human-caused disturbance. In this study, we focused on the food supply at one prominent moulting site, Mettnau Südbucht, at Lower Lake Constance. We aimed to determine the food items and quantity as well as their utilization by summering and moulting waterbirds. We conducted experiments with exclosure cages which protected macrophytes from bird grazing and compared these sites with unprotected grazed sites. In these experiments, we found that the summering and moulting waterbird community, dominated by Eurasian Coots (Fulica atra Linnaeus), caused a significant decline of the macrophyte biomass at 1.5-m depth (MWL), where they were responsible for a loss of over 40% of the total charophyte biomass. No grazing effect was found at a greater depth (2-m MWL). The available food consisted mostly of Chara spp. with a biomass density of about 350 g m?2. Animal food items were negligible: Macroinvertebrates, mainly Asellus aquaticus Linnaeus, that were associated with the macrophytes, made up only 2% of total biomass, and were very unevenly distributed.  相似文献   

12.
Invasive species can drive native organisms to extinction by limiting movement and accessibility to essential resources. The purpose of this study was to determine if zebra mussels (Dreissena polymorpha) affect the burrowing ability and growth rate of a native snail, Campeloma decisum. Snails with and without zebra mussels were collected from Douglas Lake, MI, and burrowing depths were studied in both the laboratory and Douglas Lake. Growth rates were calculated as the amount of shell growth from 2004 to 2005. Both the tendency of snails to burrow and the depth to which they burrowed into the substrate were significantly decreased by the presence of zebra mussels on snail shells in both laboratory and lake experiments. There was no difference in the percentage of snails that exhibited growth as a function of zebra mussel presence. However, for those snails that grew, there was a 50% higher growth rate for snails without zebra mussels compared to snails with zebra mussels. These negative effects of zebra mussels on growth and burrowing ability will likely lead to decreases in snail population densities in the future. Handling editor: S. Wellekens  相似文献   

13.
Enumeration of benthic (bottom dwelling) and epiphytic (attached to plants) zebra and quagga mussels (Dreissena polymorpha and D. bugensis, respectively) at Lake Erie near-shore sites in fall of 2000 revealed an unexpected prevalence of the zebra mussel on submerged plants. Even at Buffalo, New York, USA, where benthic dreissenids have been 92–100% quagga mussel since 1996, zebra mussels constituted 30–61% of epiphytes numerically. This may reflect a partitioning of settling space consistent with interspecific competition. A seasonal epiphytic refugium might allow the zebra mussel to persist even where the benthos is almost exclusively quagga mussel. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Freshwater fouling invertebrate zebra mussels (Dreissena polymorpha) harbor a diverse population of microorganisms in the Great Lakes of North America. Among the indigenous microorganisms, selective species are opportunistic pathogens to zebra mussels. Pathogenicity to zebra mussels by opportunistic bacteria isolated from the mussels was investigated in this study. Among the more than 30 bacteria isolated from temperature-stressed mussels, Aeromonas media, A. veronii, A. salmonicida subsp. salmonicida, and Shewanella putrefaciens are virulent pathogens to juvenile zebra mussels. Inoculation of a bacterial concentration of A. media, A. salmonicida subsp. salmonicida and S. putrefaciens at 107 cells per zebra mussel resulted in 100% mortality within 5 days, and only 64.9% for A. veronii. In contrast, mortality was less than 12.3% following inoculation of a sterile phosphate buffer solution as a control. In addition, mortality was dependent on the size of the pathogen population used in inoculation and the incubation temperature, indicating the close relationship between the bacterial population and subsequent death. On the mussel tissue, a dense microbial population was evident from the moribund mussels viewed with Scanning Electron Microscope (SEM). Opportunistic bacteria invaded and destroyed the D. polymorpha tissue after 7 days of incubation when the bacterial inoculation was larger than 105 per zebra mussel. Our results suggest that mussels are reservoirs of opportunistic pathogenic microorganisms to aquatic organisms and humans and a better understanding of the microbial ecology of the mussels will provide insights to the possible health hazards from these microorganisms.  相似文献   

15.
James  William F.  Barko  John W.  Eakin  Harry L. 《Hydrobiologia》2001,455(1-3):55-60
Using flow-through microcosms, we examined phosphorus (P) recycling by zebra mussels under conditions of nearly constant food resource supply and varying zebra mussel population densities (600–5200 ind./m2). At all density levels, zebra mussels filtered substantial algae, measured as chlorophyll biomass. Because chlorophyll biomass inputs were low throughout the study, zebra mussel biomass-specific rates of chlorophyll filtration declined with increasing density, suggesting food resource limitation at the higher densities. We observed net total P export and high zebra mussel biomass-specific rates of P recycling over time in microcosms at high zebra mussel densities. In systems with a low zebra mussel density, net total P export did not occur over time. Our results suggest the occurrence of P remineralization by zebra mussels and net loss associated with emaciation during periods of temporary starvation. These findings have implications for P dynamics since zebra mussels can be subjected to periods of starvation over seasonal and annual time scales.  相似文献   

16.
Habitat engineering role of the invasive zebra mussel Dreissena polymorpha (Pallas) was studied in the Curonian lagoon, a shallow water body in the SE Baltic. Impacts of live zebra mussel clumps and its shell deposits on benthic biodiversity were differentiated and referred to unmodified (bare) sediments. Zebra mussel bed was distinguished from other habitat types by higher benthic invertebrate biomass, abundance, and species richness. The impact of live mussels on biodiversity was more pronounced than the effect of shell deposits. The structure of macrofaunal community in the habitats with >103 g/m2 of shell deposits devoid of live mussels was similar to that found within the zebra mussel bed. There was a continuous shift in species composition and abundance along the gradient ‘bare sediments—shell deposits—zebra mussel bed’. The engineering impact of zebra mussel on the benthic community became apparent both in individual patches and landscape-level analyses.  相似文献   

17.
In this study, we tested whether the spatial distribution of waterbirds is influenced by shoreline urbanization or other habitat characteristics. We conducted monthly censuses along shoreline sections of a continental lake (Lake Balaton, Hungary) to assess the abundance of 11 common species that use this lake as a feeding and staging area during migration and winter. We estimated the degree of urbanization of the same shoreline sections and also measured other habitat characteristics (water depth, extent of reed cover, biomass of zebra mussels, distances to waste dumps and to other wetlands). We applied linear models and model averaging to identify habitat variables with high relative importance for predicting bird distributions. Bird abundance and urbanization were strongly related only in one species. Other habitat variables exhibited stronger relationships with bird distribution: (1) diving ducks and coots preferred shoreline sections with high zebra mussel biomass, (2) gulls preferred sites close to waste dumps, and (3) the abundances of several species were higher on shoreline sections close to other wetlands. Our findings suggest that the distribution of waterbirds on Lake Balaton is largely independent of shoreline urbanization and influenced by food availability and connectivity between wetlands.  相似文献   

18.
The zebra mussel Dreissena polymorpha is widely present in Italy, but Italian populations of this bivalve have never been genetically characterized. The mitochondrial Cytochrome Oxidase subunit I gene fragments have been used to determine the genetic structures of 3 populations from Lake Garda (n = 30), the first Italian basin colonized by this species, as well as 2 populations from Lake Constance, Germany (n = 14). A Neighbor-Joining tree and a Maximum Likelihood analysis were performed with 4 new Italian (LG1-LG4) and 3 German (LC1-LC3) haplotypes, also considering all the available Dreissena sequences from GenBank in order to estimate phylogeographic relationships. Almost all Italian haplotypes clustered with German and mid-European samples providing evidences of a mixed origin for Italian mussels. We speculate about Lake Garda colonization, for which the hypothesized "German origin" has been partially confirmed as well as the necessity of more efficient control strategies at least to minimize new colonizations.  相似文献   

19.
1. Previous studies documented that zebra mussels became abundant in the Hudson River during 1992 causing an 80–90% reduction in phytoplankton biomass. This study used intervention time series analysis of abundance, biomass and reproduction over the period 1987–95 to assess changes in zooplankton in response to the invasion.
2. Zebra mussels caused a size-dependent decline in zooplankton. Microzooplankton, including tintinnid ciliates, rotifers and copepod nauplii all declined in 1992 and were scarce thereafter. Mean abundances of post-naupliar copepods and of cladocerans were also lower following the invasion but these changes were not statistically significant ( P > 0.05). Egg ratios and clutch sizes for the dominant cladoceran, Bosmina freyi , were not significantly related to zebra mussels, even though relatively low egg ratios were observed after the invasion.
3. The strong declines in microzooplankton were probably caused by direct zebra mussel predation. Estimated consumption rates by mussels were roughly equivalent to maximum microzooplankton growth rates.
4. The total biomass of zooplankton in the Hudson River declined by more than 70% following the invasion. Annual average zooplankton biomass was correlated with chlorophyll, but biomass per unit chlorophyll in the Hudson River was much lower than in lakes. The present study hypothesizes that this lower biomass reflects limitations by riverine flow and by predation during summer.  相似文献   

20.
Unexpected habitat innovations among invading species are illustrated by the expansion of dreissenid mussels across sedimentary environments in shallow water unlike the hard substrates where they are conventionally known. In this note, records of population characteristics of invading zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels from 1994 through 1998 are reported from shallow (less than 20m) sedimentary habitats in western Lake Erie. Haphazard SCUBA collections of these invading species indicated that combined densities of zebra and quagga mussels ranged from 0 to 32,500 individuals per square meter between 1994 and 1998, with D. polymorpha comprising 75–100% of the assemblages. These mixed mussel populations, which were attached by byssal threads to each other and underlying sand-grain sediments, had size–frequency distributions that were typical of colonizing populations on hard substrates. Moreover, the presence of two mussel cohorts within the 1994 samples indicated that these species began expanding onto soft substrates not later than 1992, within 4 years of their initial invasion in western Lake Erie. Such historical data provide baselines for interpreting adaptive innovations, ecological interactions and habitat shifts among the two invading dreissenid mussel species in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号