首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Inter-simple sequence repeat (ISSR) analysis was performed in order to evaluate the genetic diversity of wild and hatchery samples of half-smooth tongue sole Cynoglossus semilaevis. A group of 200 genotypes belonging to four wild samples, Laizhou (LZ), Weihai (WH), Qingdao (QD), Rizhao (RZ) and one hatchery sample, Mingbo (MB) were screened using 15 different ISSR primers. A total of 137 loci were produced in the five studied samples. 41.80%, 45.26%, 44.27%, 42.86% and 41.59% of these loci were polymorphic over all the genotypes tested in LZ, WH, QD, RZ and MB samples, respectively. The number of polymorphic loci detected by single primer combination ranged from 2 to 7. The average heterozygosity of LZ, WH, QD, RZ and MB samples were 0.0710, 0.0814, 0.0793, 0.0727 and 0.0696, respectively. The WH sample showed a higher genetic diversity including total number of ISSR bands (P < 0.05), total number of polymorphic bands (P < 0.05), average heterozygosity (P < 0.05) and total number of genotypes (P < 0.05) than all the other samples. Among the five studied samples, the hatchery sample (MB) showed the lowest genetic viability.  相似文献   

2.
Microsatellite markers were used to assess the genetic diversity and population structure in four populations of Elymus trachycaulus from British Columbia and one population of Elymus alaskanus from Northwest Territories. Fourteen microsatellite loci were used in this study. Our results indicated that E. trachycaulus is highly polymorphic, with an average percentage of polymorphic loci of 96.5% over the four populations. Average expected heterozygosity values (HE or gene diversity) varied from 0.418 to 0.585 with a mean of 0.497. Most of the genetic variation was found within populations (85%) and the differentiation among populations was found to be 15% (Fst = 0.15). Interpopulation genetic distances corresponded well with the geographic distance between the population sites of origin, as well as morphological characteristics. Tests for Hardy–Weinberg equilibrium (HWE) for all loci and all populations revealed that all loci significantly differ from HWE. Subsequent analysis indicated that departure from HWE at some loci was due to an excess of heterozygotes. Possible explanations for heterozygote excess are discussed. The most likely reason for observed heterozygote excess could be due to the polyploidy nature of the species.  相似文献   

3.
Liriomyza trifolii (Burgess), Liriomyza huidobrensis (Blanchard), and Liriomyza bryoniae (Kaltenbach), are three closely related and economically important leafminer pests in the world. This study examined the complete mitochondrial genomes of L. trifolii, L. huidobrensis and L. bryoniae, which were 16141 bp, 16236 bp and 16183 bp in length, respectively. All of them displayed 37 typical animal mitochondrial genes and an A + T-rich region. The genomes were highly compact with only 60–68 bp of non-coding intergenic spacer. However, considerable differences in the A + T-rich region were detected among the three species. Results of this study also showed the two ribosomal RNA genes of the three species had very limited variable sites and thus should not provide much information in the study of population genetics of these species. Data generated from three leafminers' complete mitochondrial genomes should provide valuable information in studying phylogeny of Diptera, and developing genetic markers for species identification in leafminers.  相似文献   

4.
Isoetes sinensis (Isoetaceae), an aquatic quillwort which occurs only in two fragmented sites of China as an allotetraploid, is critically endangered. Genetic variation among eight subpopulations of I. sinensis was examined in the Xin’an River (119°14′–15′E, 29°28′N) by using allozyme polymorphism. Eighteen loci of 10 enzyme systems were examined and used for the analysis of population genetic parameters. As expected for allotetraploids, fixed heterozygosity was found at four loci. A high level of genetic diversity was observed in the population, with mean number of alleles per loci of 1.8, and mean percentage of polymorphic loci of 55.6%, which were much higher than the average values in fern species. The genetic variation within each subpopulation was not positively correlated with its size, which may be explained by high gene flow (Nm = 2.57), clonal reproduction and fixed heterozygosity of allopolyploid. The I. sinensis population contained high clonal diversity (PD = 0.39, D = 0.95), indicating the successful seedling recruitment of the population. Significant positive relationship was detected between clonal diversity and the size of subpopulation. Partitioning the genetic diversity indicated that 91.1% of the genetic variation was within subpopulations and only 8.9% existed among subpopulations. The migration pattern of I. sinensis along the Xin’an River is best explained by a source–sink model, but with unidirectional gene flow among subpopulations underlined by hydrochoric force. The results were then discussed in relation to both in situ and ex situ conservation efforts of the population.  相似文献   

5.
The genus Dipteronia Oliv. endemic to central and southern China consists of two species, Dipteronia sinensis Oliv. and Dipteronia dyeriana Henry, both of them are rare and endangered. AFLP markers were used to characterize the genetic diversity and geographical differentiation of the genus. Eight out of 32 PstI + 3/MseI + 3 selective primer combinations screened were applied to the analysis on 142 individuals of 17 D. sinensis and 4 D. dyeriana populations, respectively. A total of 324 fragments with 316 polymorphic were amplified. The proportion of polymorphic loci (PPB) was 97.53%. The Nei's gene diversity in D. sinensis and D. dyeriana was 0.3319 and 0.3047, respectively. About 43.6% (GST = 0.4356) of the genetic variation occurred among the populations, indicating a relatively high genetic differentiation among the populations. Cluster analysis grouped the 21 populations into two groups according to their species delimitation. The populations of D. sinensis were further divided into three subgroups corresponding to their geographical distributions. Correlation analysis revealed a significant correlation (p < 0.05) between geographical distance and genetic distance of these populations, suggesting that the relatively high genetic differentiation among the populations of D. sinensis might be caused by geographical isolation.  相似文献   

6.
The genetic diversity among spawning groups of herring from different parts of the White Sea was assessed using ten microsatellite loci. All loci were polymorphic with the expected heterozygosity estimates varying in the range of 12.7–94.1% (mean was 59.5%). The degree of genetic differentiation displayed by White Sea herring was statistically significant (θ = 2.03%). The level of pairwise genetic differentiation F ST was 0–0.085, and it was statistically significant in most of the comparison pairs between the herring samples. A hierarchical analysis of molecular variance (AMOVA) revealed the statistically significant differentiation of White Sea herring. 96.59% genetic variation was found within the samples and 3.41% variation was found among the populations. The main component of interpopulation diversity (1.85%) falls at the differences between two ecological forms of herring, spring- and summer-spawning. Within the spring-spawning form, the presence of local stocks in Kandalaksha Bay, Onega Bay, and Dvina Bay was demonstrated.  相似文献   

7.
Laboratory of genetics and physiology 2 (LGP2) is an actual detector and regulator during RNA viral infection in innate immunity. In this study, 5′-flanking region and all introns of LGP2 in grass carp (Ctenopharyngodon idella) were excavated. The genomic CiLGP2 (C. idella LGP2) was 8062 bp in length, with a 364 bp 5′-flanking region, twelve exons and eleven introns. Besides, the promoter activity of the upstream region before initiator codon was identified. By sequencing, six single nucleotide polymorphisms (SNPs) and one 20-bp insertion/deletion polymorphism were detected in CiLGP2. With a challenge experiment, the genotype and allele distributions of these seven polymorphisms were examined. Analytic result revealed only the − 1392 C/G, 494 A/T and 4403 C/T loci were significantly associated with the resistance/susceptibility to grass carp reovirus (GCRV) (P < 0.05). To further identify these correlations, another independent challenge test was performed. The analytic result based on the cumulative mortality demonstrated that the stock in − 1392 GG genotype was more susceptible to GCRV than that in CC genotype, while the stocks in 494 TT genotype and 4403 TT genotype were more resistant to GCRV than that in AA and CC genotype stocks, respectively (P < 0.05). Those significant SNPs might be potential gene markers for the future molecular selection of C. idella strains that are resistant to GCRV.  相似文献   

8.
Using inter-simple sequence repeat (ISSR) markers, studies were performed to characterize the population genetic diversity and structure of Reaumuria soongorica (Pall.) Maxim. in the oasis–desert ecotone in Fukang, Xinjiang. Eleven primers were screened to amplify DNA sequences from 132 individuals, which corresponded to seven subpopulations. Totally, 176 loci, all of them polymorphic, were detected, and the percentage of polymorphic bands (PPB) was 100%, indicating a relatively high genetic diversity within the R. soongorica population. According to the hierarchical analysis of molecular variances (AMOVA), the analysis of Shannon's diversity and Nei's analysis of gene diversity, the percentages of genetic variation among subpopulations were 15.87%, 16.28% and 14.58%, respectively, which meant that 83.72–85.42% of total genetic variation occurred within subpopulations. Besides, POPGENE analysis also revealed a relatively high gene flow (Nm = 2.9290) among subpopulations. Correlation analysis showed that there existed no significant correlation between the ISSR-based genetic diversity of the seven R. soongorica subpopulations and their ecological factors (mainly in soil) (P > 0.05). However, on the other hand, Mantel test revealed a significant correlation between inter-subpopulation genetic distances and geographic distances (r = 0.637, P < 0.01), indicating that geographic distance was among the important factors affecting the population genetic structure of R. soongorica. Meanwhile, a comparative analysis was performed between the present ISSR-based and the previously published RAPD-based results, and revealed obvious discrepancies, implying the different evolutionary patterns of the genomic regions sampled by ISSR and RAPD markers.  相似文献   

9.
阿根廷滑柔鱼两个群体间耳石和角质颚的形态差异   总被引:4,自引:0,他引:4  
方舟  陈新军  陆化杰  李建华  刘必林 《生态学报》2012,32(19):5986-5997
头足类硬组织具有稳定的形态特征、良好的信息储存以及抗腐蚀性等特点。根据2007年2—5月和2010年1—3月我国鱿钓船采集的阿根廷滑柔鱼样品,提取出625对耳石和787对角质颚,测量耳石10个形态数据和角质颚12个形态数据,通过除以胴长(Mantle Length,ML)校正后,对南巴塔哥尼亚群体(South Patagonic Stock,SPS)和布宜诺斯艾利斯-巴塔哥尼亚群体(Bonaerensis-Northpatagonic Stock,BNS)形态差异进行分析,并建立不同群体的判别函数。结果表明,BNS群体耳石和角质颚外形参数雌性大于雄性,而SPS群体则为雄性大于雌性。均数差异性检验认为,同一群体不同性别的耳石总长(Total StatolithLength,TSL)、最大宽度(Maximum Width,MW)、侧区长(Lateral Dome Length,LDL)、翼区长(Wing Length,WL)、翼区宽(WingWidth,WW)存在显著差异(P<0.05),同性别不同群体的MW、背侧区长(Dorsal Lateral Length,DLL)、吻侧区长(RostrumLateral Length,RLL)和WW存在显著差异(P<0.05)。而同一群体不同性别间角质颚的上头盖长(Upper Hood length,UHL)、上脊突长(Upper Crest length,UCL)、上喙长(Upper Rostrum length,URL)、上喙宽(Upper rostrum width,URW)、上侧壁长(UpperLateral wall length,ULWL)、下喙长(Lower Rostrum length,LRL)存在显著差异(P<0.01),同一性别不同群体角质颚的下头盖长(Lower Hood length,LHL)、下脊突长(Lower crest length,LCL)、LRL、下喙宽(Lower Rostrum width,LRW)、下侧壁长(LowerLateral wall length,LLWL)、下翼长(Lower Wing length,LWL)存在显著差异(P<0.01)。耳石形态参数经主成分分析,认为BNS群体雌雄的主成分因子主要集中在TSL/ML、DLL/ML、RW/ML和MW/ML,SPS群体主要集中于TSL/ML、RW/ML、WW/ML和DDL/ML;角质颚形态参数经主成分分析,认为BNS群体主成分因子主要集中在UHL/ML、UCL/ML、ULWL/ML和LRW/ML,SPS群体主要集中在UHL/ML、UCL/ML、ULWL/ML、URL/ML、LWL/ML和LRL/ML。利用角质颚和耳石对两群体样本分性别建立了判别函数,判别正确率均高于60%,所划分群体在部分形态指标上差异明显,具有一定的可信度。今后应加强样本采集个体大小和时间跨度,以更好的分析其群体变化规律。  相似文献   

10.
This study concentrated on the mitochondrial DNA diversity in adult Artemia urmiana populations. A total of 210 individual specimens were collected from the surface and bottom layers from three different geographical areas, comprising six sampling sites in Urmia Lake (Iran). The mitochondrial rDNA gene region was amplified using the PCR technique followed by RFLP analysis based on using eleven restriction endonucleases. Analysis at the intrapopulation level indicated that the two median and south area bottom layers have somewhat higher proportion of polymorphic sites compare to others. Although floating and sinking cysts did not consistently show genetic differences, there was significant genetic variation among all samples (FST = 0.019, P = 0.03) and 98% of the variation was within samples. Our results clearly distinguished nucleotide divergence and genetic structuring patterns, suggest that may be genetic differentiation existed in Artemia populations from Urmia Lake. Pairwise comparisons of the samples showed that the south area surface layer location was the most genetically divergent of the six sampling sites. Genetic characterizations of the various Artemia populations in two defined depths (surface and bottom) revealed differentiation that may be important in understanding the ecology of this commercially important species.  相似文献   

11.
The present study examined the genetic variation of the family Osteoglossidae from different geographical locations based on the mitochondrial NADH dehydrogenase subunit 2 (ND2) and ATPase subunit 6 (ATPase6) genes; we then re-constructed the phylogenetic relationships using the two sequences in combination. The results showed that the partial sequences of mitochondrial ND2 and ATPase6 of the family Osteoglossidae were 813 bp and 669 bp, respectively. A total of 42 species-specific nucleotide positions of the family Osteoglossidae were found to be useful for molecular identification. The sequence variation showed greater differences (8.3% ~ 28.1% for the combined sequences, 8.3% ~ 26.7% for the ND2 gene, and 9.3% ~ 28.7% for the ATPase6 gene) among the different species of Osteoglossidae, and there was a significant association between the genetic difference and geographical location. Phylogenetic analyses using neighbor-joining, Bayesian inference, and maximum parsimony (MP) methods based on the combined sequences of the two genes were able to distinguish the different species and were in agreement with the existing taxonomy based on morphological characters and in association with the geographical distribution among seven species of the family Osteoglossidae.  相似文献   

12.
台湾海峡鲐鱼种群遗传结构   总被引:4,自引:1,他引:3  
张丽艳  苏永全  王航俊  王军 《生态学报》2011,31(23):7097-7103
以往研究表明,台湾海峡的鲐鱼分属2个地理种群,即东海种群和闽南——粤东地方种群.为研究这2个种群的遗传结构,对鲐鱼闽东(30尾)和闽南(30尾)种群进行了AFLP分析,8对选择性引物在2个种群60个个体中,共扩增出497个位点,其中多态位点343个.闽东和闽南种群的多态位点比例、Nei遗传多样性指数和Shannon遗传多样性指数分别为57.75%、64.59%,0.1779、0.2123,0.2725和0.3228,2个种群的遗传多样性处于同一水平.与其他鱼类对比显示,台湾海峡鲐鱼种群的遗传多样性水平高.生境广及生命周期短被认为是台湾海峡鲐鱼具有较高遗传变异水平的原因;基因分化系数Gst、Shannon遗传多样性指数和AMOVA分析均显示鲐鱼的遗传变异主要来源于种群内,而种群间无明显的遗传分化.Nm显示2个种群间基因交流频繁.种群的显性基因型频率分布显示2个种群有基本相同的种群遗传结构.结果表明,鲐鱼闽东和闽南种群间无明显的遗传差异.幼体较强的扩散能力、海洋环流及洄游特性可能是造成台湾海峡鲐鱼种群间遗传同质性较高的原因.  相似文献   

13.
The black tiger shrimp (Penaeus monodon), a commercially important penaeid species, is widely distributed across the Indo-Pacific region. Genetic diversity in P. monodon collected from eight geographical regions in Southwest, East and Andaman coastal waters of India (N = 418) was investigated using 10 polymorphic microsatellite loci. Average observed heterozygosity at sampled loci were high, ranging from 0.643 (Coromandel Coast) to 0.753 (South Andaman). Pairwise FST (ranged from 0.005 to 0.078) and RST (ranged from 0.005 to 0.171) estimates revealed surprisingly strong and statistically significant genetic structure among tiger shrimp populations. A synthetic map generated by multidimensional scaling shows an apparent cline in allele frequencies paralleling the roughly circular flow of surface currents in the Bay of Bengal. Significant heterozygote deficiencies were noted in most population samples at most loci. Andaman Island sites showed the highest diversity. Recognition of high genetic diversity and distinct population structuring of P. monodon in Indian seas has important implications for future domestication of this species in India, for two reasons: identification of the best wild founding stocks for aquaculture and, subsequently, the potential impacts of release of domesticates to the wild, either accidentally or deliberately (i.e. for stock enhancement).  相似文献   

14.
The tick-borne protozoan parasite Theileria parva is the causal agent of East Coast Fever (ECF), a severe lymphoproliferative disease of cattle in eastern, central and southern Africa. The life cycle of T. parva is predominantly haploid, with a brief diploid stage occurring in the tick vector that involves meiotic recombination. Resolved genetic studies of T. parva are currently constrained by the lack of a genome-wide high-definition genetic map of the parasite. We undertook a genetic cross of two cloned isolates of T. parva to construct such a map from 35 recombinant progeny, using a genome-wide panel of 79 variable number of tandem repeat markers. Progeny were established by in vitro cloning of cattle lymphocytes after infection with sporozoites prepared from Rhipicephalus appendiculatus ticks fed on a calf undergoing a dual infection with the two clonal parental stocks. The genetic map was determined by assigning individual markers to the four chromosome genome, whose physical length is approximately 8309 kilobasepairs (Kb). Segregation analysis of the markers among the progeny revealed a total genetic size of 1683.8 centiMorgans (cM), covering a physical distance of 7737.62 Kb (∼93% of the genome). The average genome-wide recombination rate observed for T. parva was relatively high, at 0.22 cM Kb−1 per meiotic generation. Recombination hot-spots and cold-spots were identified for each of the chromosomes. A panel of 27 loci encoding determinants previously identified as immunorelevant or likely to be under selection were positioned on the linkage map. We believe this to be the first genetic linkage map for T. parva. This resource, with the availability of the genome sequence of T. parva, will promote improved understanding of the pathogen by facilitating the use of genetic analysis for identification of loci responsible for variable phenotypic traits exhibited by individual parasite stocks.  相似文献   

15.
Genetic diversity of five wild populations and a cultured population of topmouth culter (Culter alburnus) was investigated using amplified fragment length polymorphism (AFLP). A total of 373 reproducible bands amplified with seven AFLP primer combinations were obtained from 163 fish. The percentage of polymorphic loci ranged widely from 37.0% to 69.2% within distinct populations. The cultured population appeared to have a lower level of polymorphism (37.0%), gene diversity (0.121 ± 0.188) and Shannon's Information index (0.183 ± 0.263) than the wild populations. Analysis of molecular variance (AMOVA) revealed that average FST value overall loci was 0.2671, and the percentage of variation within population (73.29%) was larger than among populations (26.71%) (P < 0.01). The six populations were clustered into two major clades with UPGMA. The results from analysis of population pairwise gene flow indicated moderate gene flow among populations. Our study indicated that the genetic diversity of the cultured population was reduced compared with the wild populations. Geographic isolation, habitat, and artificial selection all may have played important roles in population differentiation. The information may be beneficial to future broodstock selection and defining conservation management for the different populations of topmouth culter.  相似文献   

16.
Based on the distinctiveness of their mitochondrial haplotypes and other biological features, several recent publications have proposed that some Echinococcus granulosus strains should be regarded as separate species. However, the genetic cohesion of these species has not been extensively evaluated using nuclear markers. We assess the degree of polymorphism of the partial mitochondrial cox1 (366 bp), the nuclear mdh (214 bp) and EgAgB4 (281-283 bp) genes of E. granulosus sensu lato isolates collected from areas where different strains occur sympatrically. Five distinct mitochondrial haplotypes were determined by direct sequencing (G1, G2, G5, G6 and G7). The mdh genotypes were first screened by SSCP: three alleles were identified (Md1-Md3), which were further confirmed by nucleotide sequencing. For EgAgB4, which was analysed by direct sequencing the PCR products, two groups of sequences were found: EgAgB4-1 and EgAgB4-2. No haplotype-specific mdh or EgAgB4 sequences occur. Nevertheless, alleles Md1 and Md2 and type 1 sequences of EgAgB4 showed a higher frequency within the group of haplotypes G1-G2, while allele Md3 and EgAgB4-2 are most frequent in the G5-G7 cluster. By AMOVA it is shown that 79% of the total genetic variability is found among haplotype groups. These findings are compatible with two not mutually exclusive evolutionary hypotheses: (a) that haplotypes share an ancestral polymorphism, or (b) that the reproductive isolation between parasites with distinct haplotypes is not complete, leading to gene introgression. The biologic and epidemiologic consequences of our findings are discussed.  相似文献   

17.
The genetic diversity and differentiation of eleven R. rosea populations from different parts of its wide area of occurrence were studied by ISSR markers. Using eight primers, 252 DNA fragments were generated, and 243 of those DNA fragments were found to be polymorphic, indicating a high genetic variability at the species level (P = 96.4%, h = 0.176, SI = 0.291). Relatively low levels of diversity were determined at the population level (P 30.6-59.1%, h 0.088-0.165, SI 0.137-0.257). AMOVA analysis revealed that the majority of the genetic variation was within populations (65.42%), and the variance among populations was 34.58%. Cluster analysis revealed two groups of R. rosea populations; these groups likely represent distinct evolutionary lines in the species, which are different in genetic structure, evolutionary history and chorological migration routes.  相似文献   

18.
To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.  相似文献   

19.
In order to explain the diversity patterns and develop the conservation strategies, the population genetic structures and the mating systems of Bruguiera gymnorrhiza from the coastlines of south China were investigated in this study. The mating system parameters were analyzed using progeny arrays for allozyme markers. The multilocus outcrossing rates (tm) ranged from 0.845 (Fugong) to 0.267 (Dongzhai harbor). High allozyme variations within the five collected populations were determined and compared with the published data of other plant species with the mixed mating systems. At species level, the percentage of polymorphic loci (P) was 80%, the average number of alleles per locus (A) was 2.440, and the heterozygosity (He) was 0.293. The total gene diversity within each population (HS = 0.2782) and the coefficient of genetic differentiation (GST = 0.0579) among the populations were estimated. On the basis of this population genetic structure, it is suggested that the gene flow (Nm = 3.85) is quite high, which is possibly related to its water-dispersed hypocotyls. It is also suggested that the mating system of this species is of mixed mating.  相似文献   

20.
We determined the complete mitochondrial genome sequences for Bursaphelenchus mucronatus, one species of pinewood nematode. The genome is a circular-DNA molecule of 14,583 bp (195 bp smaller than its congener Bursaphelenchus xylophilus) and contains 12 protein-coding genes (lacking atp8), 22 tRNA genes, and 2 rRNA genes encoded in the same direction, consistent with most other nematodes. Based on sequence comparison of mtDNA genomes, we developed a PCR-based molecular assay to differentiate B. xylophilus (highly pathogenic) and B. mucronatus (relatively less virulent) using species-specific primers. The molecular identification system employs multiplex-PCR and is very effective and reliable for discriminating these Bursaphelenchus species, which are economically important, but difficult to distinguish based on morphology. The comparison of the mitochondrial genomes and molecular identification system of the two species of Bursaphelenchus spp. should provide a rich source of genetic information to support the effective control and management (quarantine) of the pine wilt disease caused by pinewood nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号