首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
浅沟侵蚀是黄土高原丘陵沟壑区的一种重要侵蚀类型.以往研究多侧重于农地浅沟,有关自然恢复草被对浅沟侵蚀影响的研究甚少.本研究采用野外原位冲刷试验,以裸地浅沟为对照,探究放水流量为5、10、15、20和25 L·min-1条件下草地浅沟的径流产沙特征及侵蚀机理.结果表明: 与裸地相比,草地浅沟平均流速、稳定径流率、雷诺数、弗劳德数分别减小25.4%~67.3%、8.4%~26.6%、54.9%~80.5%、18.6%~65.1%,阻力系数增大0.09~7.18倍.草地浅沟最大产沙率、稳定产沙率和平均产沙率较裸地浅沟分别减小55.1%~90.9%、61.8%~95.4%和64.8%~92.4%;5~25 L·min-1放水流量下,自然恢复草被的减沙效益可达65.9%~88.8%,且随放水流量增大,减沙效益呈减小趋势.与裸地相比,草地浅沟的平均径流功率和平均径流剪切力分别减小54.9%~80.5%和12.4%~51.1%,临界径流功率增大1.43倍,临界剪切力增大33.7%;草地和裸地浅沟平均产沙率与平均径流功率、平均径流剪切力均呈显著线性相关.自然恢复草被显著增加了浅沟抗蚀性能,降低了浅沟径流侵蚀能力.  相似文献   

2.
随着生产建设活动的日益频繁,其产生的工程堆积体逐渐成为人为水土流失的主要来源。本研究选取风沙土和红土堆积体,通过室内模拟降雨试验,研究了不同雨强(1.0、1.5、2.0、2.5 mm·min-1)和砾石含量(0、10%、20%、30%)条件下,两种土质工程堆积体坡面侵蚀过程中水沙关系和侵蚀水动力特征的变化。结果表明: 风沙土堆积体产沙率随时间呈波动式增大趋势;红土堆积体在1.0 mm·min-1雨强时先增大后逐渐稳定,其他雨强则迅速下降后呈波动变化的趋势,且雨强越大、砾石含量越小,波动越剧烈。风沙土堆积体在0和10%砾石含量时存在坡面细沟侵蚀,细沟侵蚀阶段的产沙率是片蚀阶段的6.74~57.40倍;红土堆积体坡面侵蚀过程可划分为松散颗粒侵蚀阶段和土石侵蚀阶段,松散颗粒侵蚀阶段产沙率是土石侵蚀阶段的1.05~3.49倍。两类堆积体产沙率均随雨强增大而增大,1.0和1.5 mm·min-1雨强时产沙率随砾石含量增大而波动变化,雨强>1.5 mm·min-1时则随砾石含量增大而减小,相同条件下,风沙土堆积体产沙率是红土的1.45~4.14倍。风沙土堆积体侵蚀过程中水沙关系由水大沙少向水大沙多转变,而红土堆积体则呈相反变化: 水大沙多时期,风沙土堆积体产沙增速是红土堆积体的1.94~37.60倍;水大沙少时期,红土堆积体产沙减速是风沙土的1.40~21.30倍。总体上,径流功率在描述两类堆积体侵蚀动力过程方面优于径流剪切力,临界径流功率均随砾石含量增大而增大,其中,风沙土堆积体在细沟侵蚀阶段的临界径流功率(0.02~0.04 W·m-2)是片蚀阶段的2倍,且两阶段临界径流功率均低于红土堆积体。本研究结果可为工程堆积体侵蚀预测模型的建立提供科学参考。  相似文献   

3.
为探究砾石含量对塿土堆积体坡面产流产沙的影响,采用室内人工模拟降雨试验,以土质坡面为对照,研究5种砾石含量(10%、20%、30%、40%、50%)堆积体坡面在不同降雨强度(1.0、1.5、2.0、2.5 mm·min-1)下的产流产沙特征。结果表明:不同试验条件下的平均径流率在2.18~13.07 L·min-1,不同雨强条件下平均径流率均在砾石含量10%(或20%)和50%时分别达到最大值与最小值;平均流速在0.06~0.22 m·s-1,流速变化复杂,砾石含量越小,流速变幅越大,变异系数也越大,砾石含量10%时平均流速最大。砾石的存在可有效抑制产沙,最大减沙效益可达84.2%,雨强相较于砾石含量对平均产沙率的影响更大。偏相关分析表明,平均径流率、流速、产沙率均与砾石含量呈极显著负相关;平均产沙率与平均径流率、平均流速以及二者交互项均呈极显著线性函数关系,其中,与平均径流率的相关性最强。本研究可为塿土区工程堆积体水土流失治理和侵蚀模型的建立提供参考。  相似文献   

4.
曹博召  王健  赵娅君  刘超 《应用生态学报》2022,33(11):2979-2986
植草沟被广泛应用于海绵城市建设中,可有效改善城市生态环境。为探究植草沟径流调控作用的机理,通过放水模拟试验,研究了5个坡度(1%、2%、3%、4%、5%)、5个放水流量(20、30、40、50、60 L·min-1)组合条件下植草沟径流的水力学特性与断面流速分布变化规律。结果表明: 植草沟径流水力学特性主要表现为,随流量和坡度的增加,流速、雷诺数和佛汝德数均逐渐增加,曼宁糙率系数与Darcy-Weisbach阻力系数逐渐减小。流速(V)可以用流量(Q)与坡度(S)的幂函数V=0.3387Q0.555S0.6601来表示。雷诺数和佛汝德数变化范围分别为1160.95~6596.82和0.17~1.21,径流流态均为紊流,流型受坡度影响较大。流量和坡度较小时,两者对阻力系数的影响较大,试验条件下水流阻力系数与雷诺数呈负相关关系。植草沟径流断面流速分布表现出关于中心两侧对称分布,最大流速点位于中心水面处,断面流速等值线随流量和坡度的增加而逐渐变密,流速变化梯度增大。本研究可为黄土区海绵城市建设中植草沟的设计应用与水力计算提供理论基础,也可以通过分析植草沟径流水力学特性以探索其径流调控机理。  相似文献   

5.
分析坡面上方汇流和土壤管道崩塌对黑土坡面水蚀过程的影响,可为黑土侵蚀退化防治提供重要科学依据。本研究基于坡面汇流模拟试验,设计3个上方汇流强度和3种近地表土壤水文条件(无土壤管道、有土壤管道无管道流、有土壤管道流),研究坡面上方汇流和土壤管道崩塌对黑土坡面水蚀过程的影响,量化土壤管道侵蚀对黑土坡面侵蚀的贡献。结果表明:1)坡面侵蚀量随上方汇流强度的增加而增加,当上方汇流强度从30 L·min-1增加到40和50 L·min-1时,坡面侵蚀量分别增加100.0%~111.5%和214.8%~289.2%。2)土壤管道发生和管道流形成加剧了坡面水蚀过程,30、40和50 L·min-1上方汇流强度下有土壤管道无管道流和有土壤管道流处理的坡面侵蚀量分别是无土壤管道处理的1.4~1.6倍和1.7~2.1倍。此外,3种上方汇流强度下有土壤管道无管道流和有土壤管道流处理的土壤管道侵蚀对坡面土壤侵蚀的贡献分别为26.7%~37.6%和40.5%~51.9%。3)土壤管道崩塌加剧了细沟侵蚀过程,30、40和50 L·min-1...  相似文献   

6.
模拟降雨条件下含砾石红壤工程堆积体产流产沙过程   总被引:11,自引:0,他引:11  
生产建设项目开发过程中形成的工程堆积体具有特殊的结构和复杂的物质组成,坡面侵蚀特征明显有别于一般农地.采用室内人工模拟降雨试验方法,研究降雨强度对红壤区不同砾石含量(0%、10%、20%、30%)工程堆积体产流产沙过程的影响.结果表明: 坡面产流开始时间随降雨强度和砾石含量的增大而减小,减幅分别为48.5%~77.9%和4.2%~34.2%,且与降雨强度呈显著的幂函数关系.坡面径流流速和径流率均随产流历时呈先上升随后趋于稳定的变化趋势,降雨强度是其主要影响因素,砾石含量对其影响不显著.砾石对径流量的影响存在一个10%左右的阈值,1.0 mm·min-1雨强、10%砾石含量时坡面产流量最小;雨强>1.0 mm·min-1时,10%砾石含量坡面产流量最大.随雨强增大径流量增加10%~60%.坡面含沙量在产流前6 min急剧下降后趋于稳定,随砾石含量增大,降雨强度对含沙量的影响减小.雨强>1.0 mm·min-1时,砾石具有显著的减沙效应,产沙量与降雨强度和砾石含量呈显著的线性函数关系.  相似文献   

7.
非硬化土路径流侵蚀产沙动力参数分析   总被引:1,自引:0,他引:1  
采用野外径流冲刷试验的方法,模拟研究非硬化路面土壤剥蚀率与各水动力学参数之间的关系,并建立各自的定量关系式.结果表明: 不同流量和坡度下,平均土壤剥蚀率可以用放水流量和坡度的幂函系数关系进行描述,并随放水流量和坡度的增大而增大,流量对土壤剥蚀率的影响大于坡度;土壤剥蚀率与水流流速呈幂函数关系;土壤剥蚀率与径流动能呈幂函数关系,径流动能对土壤剥蚀率有重要作用;土壤剥蚀率与单宽径流能耗呈线性函数关系,土壤可蚀性参数和临界单宽径流能耗的均值分别为0.120 g·m-1·J-1和2.875 g·m-1·J-1.放水流量和坡度、单宽能耗可准确地描述道路土壤侵蚀过程并对土壤侵蚀量进行测算.  相似文献   

8.
黄土丘陵沟壑区黄土坡面侵蚀过程及其影响因素   总被引:6,自引:0,他引:6  
降雨强度、坡长、坡度是影响坡面产流产沙的重要因素。为定量分析降雨强度、坡长、坡度对黄土丘陵沟壑区安塞黄土坡面侵蚀过程的影响,本研究基于室内人工模拟降雨试验,分析2个坡长(5、10 m)、3个坡度(5°、10°、15°)、2个降雨强度(60、90 mm·h-1)下安塞黄土坡面产流产沙规律。结果表明: 初始产流时间随坡长增加呈减小趋势,但总体变化不大;初始产流时间随降雨强度增加而减小,与60 mm·h-1相比,90 mm·h-1下缩短5.7~18 min;10°坡度上的径流起始时间最快。随降雨历时延长,产流率先快速增加,最终逐渐稳定在某一产流率值上下波动;产沙率在产流初期短时间内突然升高,达到最大值后减小,再逐渐达到稳定。产流率和产沙率随坡长和降雨强度的增加而增加,但随坡度变化规律不明显。随着降雨强度、坡长和坡度的增加,总产沙量相应增加。在降雨强度90 mm·h-1时,坡长和坡度分别为10 m和15°的坡面产生了细沟,导致总侵蚀量最大(11885.66 g)。降雨强度为60 mm·h-1时,随着坡长增加单位面积侵蚀量减小,在5~10 m坡段存在临界侵蚀坡长。坡长、坡度和降雨强度对坡面径流过程均有促进作用,降雨强度、坡长和两者之间交互作用对产流率和总侵蚀量的贡献率较大,其中,对产流率贡献最大的影响因素是降雨强度,贡献率为49.8%;坡长对总侵蚀的贡献率最大,为37.8%。  相似文献   

9.
壤中流和土壤解冻深度对黑土坡面融雪侵蚀的影响   总被引:1,自引:0,他引:1  
融雪侵蚀是东北黑土区土壤流失的一种重要形式,而目前有关壤中流和土壤解冻深度对融雪径流侵蚀的影响研究较少。本研究采用室内模拟试验,设计两个融雪径流量(1和4 L·min-1)和两个土壤解冻深度(5和10 cm),以及有、无壤中流处理,分析壤中流和土壤解冻深度对黑土区坡面融雪侵蚀的影响。结果表明: 1)壤中流处理下坡面融雪径流深度和侵蚀量分别是无壤中流处理的1.1~1.2倍和1.3~1.9倍。两个融雪径流量下,当土壤解冻深度由5 cm增加到10 cm时,无壤中流处理下坡面融雪径流深度和侵蚀量分别增加10.0%~13.5%和15.4%~37.1%;而有壤中流处理下坡面融雪径流深度增加6.5%~8.5%,融雪侵蚀量则无显著变化。2)坡面细沟发育受壤中流、土壤解冻深度和融雪径流量的综合影响,各处理下细沟侵蚀量占坡面融雪侵蚀量的72%以上。3)壤中流发生使坡面径流流速和径流剪切力分别增加20.3%~23.2%和37.0%~51.3%,Darcy-Weisbach阻力系数减少9.0%~21.4%,从而增加了坡面融雪侵蚀量;且壤中流发生促进了坡面细沟发育,其细沟侵蚀量较无壤中流处理增加43.6%~69.9%,也导致坡面融雪侵蚀量增加。无壤中流条件下,土壤解冻深度加剧坡面融雪侵蚀的主要原因是随着土壤解冻深度的增加,坡面径流侵蚀能力和可蚀性物质来源增加,导致融雪径流侵蚀量增加。此外,土壤解冻深度对壤中流条件下细沟形态发育也有明显的影响,土壤解冻深度为5 cm时,细沟横向加宽作用显著;而土壤解冻深度为10 cm时,细沟下切侵蚀作用更显著。本研究加深了对黑土区融雪侵蚀机理的认识,可为水蚀模型的研发提供理论指导。  相似文献   

10.
黄土区土质与土石质塿土堆积体水力侵蚀过程差异   总被引:2,自引:0,他引:2  
利用室内模拟降雨试验,研究了不同雨强及坡度条件下黄土区土质(不含砾石)与土石质(砾石质量分数30%)塿土堆积体的水动力学特征、侵蚀特征及侵蚀动力机制的差异。结果表明: 砾石存在改变了堆积体坡面的水动力学特性,与土质坡面相比,土石质坡面的流速、弗汝德数、单位径流功率和过水断面单位能分别减少1.7%~49.7%、6.7%~60.6%、2.0%~44.6%和1.0%~26.7%;曼宁糙率系数、径流剪切力分别增加6.2%~169.4%、5.7%~79.3%。2.0、2.5 mm·min-1雨强下,土石质坡面侵蚀速率较土质坡面降低26.2%~89.9%,砾石的减沙效益显著。2种堆积体的侵蚀速率与水动力学参数间均可用线性函数拟合,与土质坡面相比,土石质坡面的可蚀性参数均降低,降幅为56.1%~73.3%;而临界水动力学参数中径流剪切力增加11.1%,径流功率、单位径流功率和过水断面单位能分别减少25.4%、64.0%和5.0%。砾石的存在一定程度上控制了工程堆积体坡面降雨侵蚀过程。  相似文献   

11.
基于模拟降雨试验的喀斯特坡耕地土壤侵蚀特征   总被引:1,自引:1,他引:0  
探索喀斯特坡耕地土壤侵蚀过程及机理对该区水土流失及石漠化治理具有重要的现实和指导意义.本文采用人工模拟降雨的试验方法,探索喀斯特坡耕地土壤侵蚀过程及特征.结果表明: 降雨强度较小时(30、50 mm·h-1),水土流失以地下孔(裂)隙流失为主,当降雨强度较大时(80 mm·h-1),土壤侵蚀以地表流失为主;地表径流模数和输沙率均随坡度的增加而增大,随孔(裂)隙度的增加而减小.地下径流模数在0.37~0.52 L·m-2·min-1,地下输沙率在0.81~1.93 g·min-1,二者均随坡度的增加而减小,随降雨强度的增加呈先增大后减小的变化趋势.  相似文献   

12.
黄土丘陵区坡面尺度生物结皮多是由藻、藓和地衣等以不同比例、不同方式组合的一个复杂群落结构,显著影响水分入渗,但目前混合生物结皮水分入渗与其群落结构之间的关系仍不清楚,妨碍了对坡面尺度生物结皮土壤渗透性的评估。本研究测定了藻结皮、藓结皮及藓结皮盖度分别为<15%、15%~30%、30%~45%、45%~60%、>60% 5个不同藻藓比例的混合生物结皮的稳定入渗速率,采用主成分分析和通径分析揭示混合生物结皮水分稳定入渗速率的影响因素,明确混合生物结皮水分稳定入渗速率与群落结构之间的关系。结果表明: 藻结皮和藓结皮土壤饱和导水率分别为0.66和2.40 mm·min-1。藓结皮盖度从<15%到>60%的混合生物结皮的稳定入渗速率为0.80~2.30 mm·min-1。混合生物结皮水分稳定入渗速率主要与藓结皮盖度和藓结皮改善的土壤孔隙结构密切相关,相关系数分别为0.636(P=0.011)和0.835(P=0.000)。通过藻结皮和藓结皮土壤饱和导水率与盖度加权预测的混合生物结皮水分入渗量(y)与混合生物结皮实测水分入渗量(x)具有极显著相关关系(r=0.945),二者拟合的线性函数为y=0.85x(R2=0.98,P<0.05)。本研究明确了混合生物结皮水分入渗与单一组成生物结皮水分入渗之间的关系,为准确评估该区生物结皮水文过程提供了科学依据。  相似文献   

13.
为建立高效液相色谱法同时测定草苁蓉干燥全草中草苁蓉纳拉苷和草苁蓉苷B的含量的分析方法,采用色谱柱:Klimail 100-5 C18柱(250 mm×4.6 mm,5μm);流动相:以乙腈为流动相A,以0.5%甲酸水溶液为流动相B,梯度洗脱条件:0~12 min,15%A;12~30 min,15%~20%A;30~40 min,20%~25%A;40~45 min,25%~30%A;45~60 min,30%~100%A;流速:1.0 mL·min-1;检测波长:260 nm;柱温:30℃;进样量:20μL。得到草苁蓉纳拉苷的线性范围为4.688~150μg·mL-1(R2=0.999 5);草苁蓉苷B的线性范围为3.438~110μg·mL-1(R2=0.999 1);平均回收率分别为97.86%、96.55%;RSD分别为1.01、1.23(n=9)。本研究利用高效液相色谱法建立了同时测定草苁蓉全草中草苁蓉纳拉苷和草苁蓉苷B两种组分的方法。方法学的验证结果证明,该方法简便、快捷,重现性好,可以用于草苁蓉中草苁蓉纳拉苷和草苁蓉苷B两种组分的含量测定。  相似文献   

14.
为筛选分离得到具有高产中性蛋白酶能力的菌株,同时研究菌株的发酵条件,在牛粪、猪粪堆肥时期采集样品,在以干酪素为唯一碳源的固体培养基上筛选分离得到19株产蛋白酶菌株。选取其中1株产酶效果最好的菌株PC2,其水解圈D/d值为4.25,酶活为10.74 U·mL-1。结合形态学、生理生化以及16S rDNA分子生物学鉴定结果,认定其为枯草芽孢杆菌,革兰氏阳性菌。进一步对其进行摇瓶和中试放大条件优化,LB培养基37 ℃活化24 h,干酪素发酵培养基30 ℃发酵48 h,转速为180 r·min-1。中试放大具体参数:50 L种子罐180~240 r·min-1,通气量20~30 L·min-1。500 L发酵罐:添加1%小麦蛋白粉,100~180 r·min-1,通气量10~25 L·min-1。发酵结束活菌含量44.58亿·mL-1,酶活29.48 U·mL-1,是初始值的2.745倍。研究结果可为探究含中性蛋白酶菌株的微生物菌剂奠定理论基础,并指导工业化菌剂的生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号