首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Human chromosome fragility   总被引:2,自引:0,他引:2  
Fragile sites are heritable specific chromosome loci that exhibit an increased frequency of gaps, poor staining, constrictions or breaks when chromosomes are exposed to partial DNA replication inhibition. They constitute areas of chromatin that fail to compact during mitosis. They are classified as rare or common depending on their frequency within the population and are further subdivided on the basis of their specific induction chemistry into different groups differentiated as folate sensitive or non-folate sensitive rare fragile sites, and as aphidicolin, bromodeoxyuridine (BrdU) or 5-azacytidine inducible common fragile sites. Most of the known inducers of fragility share in common their potentiality to inhibit the elongation of DNA replication, particularly at fragile site loci. Seven folate sensitive (FRA10A, FRA11B, FRA12A, FRA16A, FRAXA, FRAXE and FRAXF) and two non-folate sensitive (FRA10B and FRA16B) fragile sites have been molecularly characterized. All have been found to represent expanded DNA repeat sequences resulting from a dynamic mutation involving the normally occurring polymorphic CCG/CGG trinucleotide repeats at the folate sensitive and AT-rich minisatellite repeats at the non-folate sensitive fragile sites. These expanded repeats were demonstrated, first, to have the potential, under certain conditions, to form stable secondary non-B DNA structures (intra-strand hairpins, slipped strand DNA or tetrahelical structures) and to present highly flexible repeat sequences, both conditions which are expected to affect the replication dynamics, and second, to decrease the efficiency of nucleosome assembly, resulting in decondensation defects seen as fragile sites. Thirteen aphidicolin inducible common fragile sites (FRA2G, FRA3B, FRA4F, FRA6E, FRA6F, FRA7E, FRA7G, FRA7H, FRA7I, FRA8C, FRA9E, FRA16D and FRAXB) have been characterized at a molecular level and found to represent relatively AT-rich DNA areas, but without any expanded repeat motifs. Analysis of structural characteristics of the DNA at some of these sites (FRA2G, FRA3B, FRA6F, FRA7E, FRA7G, FRA7H, FRA7I, FRA16D and FRAXB) showed that they contained more areas of high DNA torsional flexibility with more highly AT-dinucleotide-rich islands than neighbouring non-fragile regions. These islands were shown to have the potential to form secondary non-B DNA structures and to interfere with higher-order chromatin folding. Therefore, a common fragility mechanism, characterized by high flexibility and the potential to form secondary structures and interfere with nucleosome assembly, is shared by all the cloned classes of fragile sites. From the clinical point of view, the folate sensitive rare fragile site FRAXA is the most important fragile site as it is associated with the fragile X syndrome, the most common form of familial mental retardation, affecting about 1/4000 males and 1/6000 females. Mental retardation in this syndrome is considered as resulting from the abolition of the FMR1 gene expression due to hypermethylation of the gene CpG islands adjacent to the expanded methylated trinucleotide repeat. FRAXE is associated with X-linked non-specific mental retardation, and FRA11B with Jacobsen syndrome. There is also some evidence that fragile sites, especially common fragile sites, are consistently involved in the in vivo chromosomal rearrangements related to cancer, whereas the possible implication of common fragile sites in neuropsychiatric and developmental disorders is still poorly documented.  相似文献   

2.
Molecular basis for expression of common and rare fragile sites   总被引:12,自引:0,他引:12       下载免费PDF全文
Fragile sites are specific loci that form gaps, constrictions, and breaks on chromosomes exposed to partial replication stress and are rearranged in tumors. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. The molecular basis of rare fragile sites is associated with expanded repeats capable of adopting unusual non-B DNA structures that can perturb DNA replication. The molecular basis of common fragile sites was unknown. Fragile sites from R-bands are enriched in flexible sequences relative to nonfragile regions from the same chromosomal bands. Here we cloned FRA7E, a common fragile site mapped to a G-band, and revealed a significant difference between its flexibility and that of nonfragile regions mapped to G-bands, similar to the pattern found in R-bands. Thus, in the entire genome, flexible sequences might play a role in the mechanism of fragility. The flexible sequences are composed of interrupted runs of AT-dinucleotides, which have the potential to form secondary structures and hence can affect replication. These sequences show similarity to the AT-rich minisatellite repeats that underlie the fragility of the rare fragile sites FRA16B and FRA10B. We further demonstrate that the normal alleles of FRA16B and FRA10B span the same genomic regions as the common fragile sites FRA16C and FRA10E. Our results suggest that a shared molecular basis, conferred by sequences with a potential to form secondary structures that can perturb replication, may underlie the fragility of rare fragile sites harboring AT-rich minisatellite repeats and aphidicolin-induced common fragile sites.  相似文献   

3.
We determined previously that the selectable marker pSV2neo is preferentially inserted into chromosomal fragile sites in human x hamster hybrid cells in the presence of an agent (aphidicolin) that induces fragile-site expression. In contrast, cells transfected without fragile-site induction showed an essentially random integration pattern. To determine whether the integration of marker DNA at fragile sites affects the frequency of fragile-site expression, the parental hybrid and three transfectants (two with pSV2neo integrated at the fragile site at 3p14.2 [FRA3B] and specific hamster fragile sites [chromosome 1, bands q26-31, or mar2, bands q11-13] and one with pSV2neo integrated at sites that are not fragile sites) were treated with aphidicolin. After 24 h the two cell lines with plasmid integration at FRA3B showed structural rearrangements at that site; these rearrangements accounted for 43%-67% of the total deletions and translocations observed. Structural rearrangements were not observed in the parental cell line. After 5 d aphidicolin treatment, the observed excess in frequency of structural rearrangements at FRA3B in the cell lines with pSV2neo integration at 3p14 over that in the two lines without FRA3B integration was less dramatic, but nonetheless significant. Fluorescent in situ hybridization (FISH) analysis of these cells, using a biotin-labeled pSV2neo probe, showed results consistent with the gross rearrangements detected cytogenetically in the lines with FRA3B integration; however, the pSV2neo sequences were frequently deleted concomitantly with translocations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Replication dynamics at common fragile site FRA6E   总被引:4,自引:0,他引:4  
The replication dynamics at common fragile site FRA6E has been evaluated by molecular combing and interphase fluorescent in situ hybridisation (FISH) in primary human lymphocytes cultured under normal or aphidicolin-induced stress conditions. FRA6E is one of the most frequently expressed common fragile sites of the human genome. It harbours several genes, PARK2 being regarded as the most relevant one. According to the results obtained from interphase FISH analysis, FRA6E can be considered a mid-late-replicating sequence characterised by heterogeneous replication timing. Molecular combing did not reveal specific replication parameters at the fragile site: fork rates were highly comparable to those detected at an early replicating locus (LMNB2) used as control and in very good agreement with the whole-genome data obtained in parallel. The same indication applied to the density of initiation zones, the inter-origin distances from adjacent ongoing forks, the frequencies of unidirectional forks, fork arrest events and asynchronous forks. Interestingly, PARK2 appeared embedded in an early/late replication transition zone, corresponding to intron 8 (162 kb) and to the fragility core of FRA6E. In cells exposed to aphidicolin, few forks progressing at a rather slow rate were observed, the majority of them being unidirectional, but again a specific response of the fragile site was not observed. In summary, at FRA6E the replication process is not impaired per se, but chromosome breakages occur preferentially at an early/late replication transition zone. Aphidicolin might increase the occurrence of breakage events at FRA6E by prolonging the time interval separating the replication of early and late replication domains. These results may be of general significance to address the problem of fragile site instability.  相似文献   

5.
DNA instability at chromosomal fragile sites in cancer   总被引:3,自引:0,他引:3  
Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.  相似文献   

6.
Perturbed DNA replication in early stages of cancer development induces chromosomal instability preferentially at fragile sites. However, the molecular basis for this instability is unknown. Here, we show that even under normal growth conditions, replication fork progression along the fragile site, FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to activation of additional origins to enable replication completion. Under mild replication stress, the frequency of stalling at AT-rich sequences is further increased. Strikingly, unlike in the entire genome, in the FRA16C region additional origins are not activated, suggesting that all potential origins are already activated under normal conditions. Thus, the basis for FRA16C fragility is replication fork stalling at AT-rich sequences and inability to activate additional origins under replication stress. Our results provide a mechanism explaining the replication stress sensitivity of fragile sites and thus, the basis for genomic instability during early stages of cancer development.  相似文献   

7.
8.
Common fragile sites (cFSs) are non-random chromosomal regions that are prone to breakage under conditions of replication stress. DNA damage and chromosomal alterations at cFSs appear to be critical events in the development of various human diseases, especially carcinogenesis. Despite the growing interest in understanding the nature of cFS instability, only a few cFSs have been molecularly characterised. In this study, we fine-mapped the location of FRA2H using six-colour fluorescence in situ hybridisation and showed that it is one of the most active cFSs in the human genome. FRA2H encompasses approximately 530 kb of a gene-poor region containing a novel large intergenic non-coding RNA gene (AC097500.2). Using custom-designed array comparative genomic hybridisation, we detected gross and submicroscopic chromosomal rearrangements involving FRA2H in a panel of 54 neuroblastoma, colon and breast cancer cell lines. The genomic alterations frequently involved different classes of long terminal repeats and long interspersed nuclear elements. An analysis of breakpoint junction sequence motifs predominantly revealed signatures of microhomology-mediated non-homologous recombination events. Our data provide insight into the molecular structure of cFSs and sequence motifs affected by their activation in cancer. Identifying cFS sequences will accelerate the search for DNA biomarkers and targets for individualised therapies.  相似文献   

9.
Cellular processes involved in fragile site expression have been investigated by studying the effect on the replication pattern of the commonest fragile site FRA3B of RNA interference (RNAi)-mediated sister maintenance chromosome 1 (SMC1) inhibition in normal human fibroblasts. Replication timing of FRA3B in G2 was studied by bromodeoxyuridine (BrdU) labeling for the final 2h of cell culture whereas in the S phase was investigated by a fluorescence in situ hybridization (FISH)-based approach through the analysis of clones spanning the FRA3B region. Results showed that FRA3B is normally late replicated even though it is not expressed in untreated cells. On the other hand, SMC1 inhibition leads to FRA3B expression even if the percent of late replicated cells is comparable to control cells. These results obtained by analysing the commonest fragile site suggest that SMC1 plays a role in protecting late replicating regions from stresses occurring in the final steps of genome replication and that delayed replication is necessary but not sufficient for inducing fragile site expression.  相似文献   

10.
The mammalian chromosomes present specific sites of gaps or breaks, the common fragile sites (CFSs), when the cells are exposed to DNA replication stress or to some DNA binding compounds. CFSs span hundreds or thousands of kilobases. The analysis of these sequences has not definitively clarified the causes of their fragility. There is considerable evidence that CFSs are regions of late or slowed replication in the presence of sequence elements that have the propensity to form secondary structures, and that the cytogenetic expression of CFSs may be due to unreplicated DNA. In order to analyse the relationship between DNA replication time and fragility, in this work we have investigated the timing of replication of sequences mapping within two CFSs (FRA1H and FRA2G), of syntenic non-fragile sequences and of early and late replicating control sequences by using fluorescent in situ hybridization on interphase nuclei, conventional fluorescence microscopy and confocal microscopy. Our results indicate that the fragile sequences are slow replicating and that they enter G2 phase unreplicated with very high frequency. Thus these regions could sometimes reach mitosis unreplicated or undercondensed and be expressed as chromosome gaps/breakages.  相似文献   

11.
Chromosomal instability at common fragile sites in Seckel syndrome   总被引:2,自引:0,他引:2       下载免费PDF全文
Seckel syndrome (SCKL) is a rare, genetically heterogeneous disorder, with dysmorphic facial appearance, growth retardation, microcephaly, mental retardation, variable chromosomal instability, and hematological disorders. To date, three loci have been linked to this syndrome, and recently, the gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) was identified as the gene mutated at the SCKL1 locus. The ATR mutation affects splicing efficiency, resulting in low levels of ATR in affected individuals. Elsewhere, we reported increased instability at common chromosomal fragile sites in cells lacking the replication checkpoint gene ATR. Here, we tested whether cells from patients carrying the SCKL1 mutation would show increased chromosome breakage following replication stress. We found that, compared with controls, there is greater chromosomal instability, particularly at fragile sites, in SCKL1-affected patient cells after treatment with aphidicolin, an inhibitor of DNA polymerase alpha and other polymerases. The difference in chromosomal instability between control and patient cells increases at higher levels of aphidicolin treatment, suggesting that the low level of ATR present in these patients is not sufficient to respond appropriately to replication stress. This is the first human genetic syndrome associated with increased chromosome instability at fragile sites following replication stress, and these findings may be related to the phenotypic findings in patients with SCKL1.  相似文献   

12.
Human chromosomal fragile sites are specific loci that are especially susceptible to DNA breakage following conditions of partial replication stress. They often are found in genes involved in tumorigenesis and map to over half of all known cancer-specific recurrent translocation breakpoints. While their molecular basis remains elusive, most fragile DNAs contain AT-rich flexibility islands predicted to form stable secondary structures. To understand the mechanism of fragile site instability, we examined the contribution of secondary structure formation to breakage at FRA16B. Here, we show that FRA16B forms an alternative DNA structure in vitro. During replication in human cells, FRA16B exhibited reduced replication efficiency and expansions and deletions, depending on replication orientation and distance from the origin. Furthermore, the examination of a FRA16B replication fork template demonstrated that the majority of the constructs contained DNA polymerase paused within the FRA16B sequence, and among the molecules, which completed DNA synthesis, 81% of them underwent fork reversal. These results strongly suggest that the secondary-structure-forming ability of FRA16B contributes to its fragility by stalling DNA replication, and this mechanism may be shared among other fragile DNAs.  相似文献   

13.
The common fragile site at chromosomal band 3p14.2 (FRA3B) is the most sensitive single site in the human genome to induced chromosomal lesions. This fragile site may predispose chromosome 3p to breakage that is commonly observed in lung, renal, and many other cancers. We previously used aphidicolin induction of FRA3B expression in a chromosome 3-only somatic cell hybrid to generate a series of hybrids with breakpoints in the 3p14.2 region. These breakpoints were localized to two distinct clusters, separated by 200 kb, that lie on either side of a region of frequent breakage within FRA3B as observed by FISH analysis. Seven proximal aphidicolin-induced breakpoints were localized at or near the end of a THE element. The THE-1 element is flanked by LINE andAlurepetitive elements. The eight distal aphidicolin-induced breakpoints clustered in a region capable of forming multiple hairpin-like structures. Thus repetitive elements and hairpin-like structures may be responsible for chromosome fragility in this region.  相似文献   

14.
15.
Common fragile genes   总被引:3,自引:0,他引:3  
Common chromosome fragile sites show susceptibility to DNA damage, leading to alterations that contribute to cancer development. The cloning and characterization of fragile sites have demonstrated that fragile sites are associated with genes that relate to tumorigenesis. Identification of the basis of instability at fragile sites and the related genes provides an entree to understanding of important aspects of chromosomal instability, a prominent feature of neoplastic genomes. FHIT/FRA3B and WWOX/FRA16D, the most sensitive common fragile genes in the human genome, function as tumor suppressor genes. The common features of these two common fragile genes are summarized, and suggest clues to understanding the relation between genomic instability and tumor biology.  相似文献   

16.
Induction of sister chromatid exchanges at common fragile sites.   总被引:13,自引:3,他引:10       下载免费PDF全文
Experiments were performed to gain further insight into chromosome structure and behavior at common fragile sites by testing the hypothesis that gaps at these sites predispose to intrachromosomal recombination as measured by sister chromatid exchanges (SCEs). Human lymphocytes were concurrently treated with aphidicolin, for determination of fragile site expression, and with 5-bromodeoxy-uridine, for SCE analysis. Aphidicolin induced chromosome gaps nonrandomly, with the great majority of gaps occurring at common fragile sites. On average, 66% of gaps were accompanied by an SCE at the site of the lesion. Analysis of two specific common fragile sites at 3p14 and 16q23 showed the same pattern; that is, on average 70% of gaps at these sites were accompanied by an SCE. These results show that common fragile sites are hot spots not only for chromosomal lesions such as gaps but also for SCE formation.  相似文献   

17.
The neurobeachin gene spans the common fragile site FRA13A   总被引:3,自引:0,他引:3  
Common fragile sites are normal constituents of chromosomal structure prone to chromosomal breakage. In humans, the cytogenetic locations of more than 80 common fragile sites are known. The DNA at 11 of them has been defined and characterized at the molecular level. According to the Genome Database, the common fragile site FRA13A maps to chromosome band 13q13.2. Here, we identify the precise genomic position of FRA13A, and characterize the genetic complexity of the fragile DNA sequence. We show that FRA13A breaks are limited to a 650 kb region within the neurobeachin (NBEA) gene, which genomically spans approximately 730 kb. NBEA encodes a neuron-specific multidomain protein implicated in membrane trafficking that is predominantly expressed in the brain and during development.  相似文献   

18.
WRN is a member of the RecQ family of DNA helicases implicated in the resolution of DNA structures leading to the stall of replication forks. Fragile sites have been proposed to be DNA regions particularly sensitive to replicative stress. Here, we establish that WRN is a key regulator of fragile site stability. We demonstrate that in response to mild doses of aphidicolin, WRN is efficiently relocalized in nuclear foci in replicating cells and that WRN deficiency is associated with accumulation of gaps and breaks at common fragile sites even under unperturbed conditions. By expressing WRN isoforms impaired in either helicase or exonuclease activity in defective cells, we identified WRN helicase activity as the function required for maintaining the stability of fragile sites. Finally, we find that WRN stabilizes fragile sites acting in a common pathway with the ataxia telangiectasia and Rad3 related replication checkpoint. These findings provide the first evidence of a crucial role for a helicase in protecting cells against chromosome breakage at normally occurring replication fork stalling sites.  相似文献   

19.
Common fragile sites are chromosomal loci prone to breakage and rearrangement that can be induced by aphidicolin, an inhibitor of DNA polymerases. Within these loci, sites of preferential DNA breaks were proposed to correlate with peaks of enhanced DNA flexibility, the function of which remains elusive. Here we show that mammalian DNA replication origins are enriched in peaks of enhanced flexibility. This finding suggests that the search for these features may help in the mapping of replication origins, and we present evidence supporting this hypothesis. The association of peaks of flexibility with replication origins also suggests that some origins may associate with minor levels of fragility. As shown here, an increased sensitivity to aphidicolin was found near two mammalian DNA replication origins.  相似文献   

20.
Common fragile sites in man and three closely related primate species   总被引:5,自引:0,他引:5  
The expression of common fragile sites was studied in peripheral lymphocytes of man, gorilla, chimpanzee, and orangutan after induction with aphidicolin, methotrexate, or fluorodeoxyuridine. As far as the chromosomal localization is concerned, it appears that many of these sites have been highly conserved during primate evolution. However, differences were found in the relative expression of certain sites. In all four species, mapping of approximately 500 lesions disclosed the most breakage-prone common fragile sites, at which about 90% of all induced aberrations were localized. Comparison of chromosome regions involved in evolutionary changes to fragile sites in the four primate species revealed 30 sites that were located at or close to the same chromosomal band. However, no correlation was found between the relative expression of a certain common fragile site in vitro and a potential involvement of this chromosomal site in evolutionary changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号