首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Poly(A)-specific ribonuclease (PARN) is a cap-interacting and poly(A)-specific 3′-exoribonuclease that efficiently degrades mRNA poly(A) tails. Based on the enzyme's preference for its natural substrates, we examined the role of purine nucleotides as potent effectors of human PARN activity. We found that all purine nucleotides tested can reduce poly(A) degradation by PARN. Detailed kinetic analysis revealed that RTP nucleotides behave as non-competitive inhibitors while RDP and RMP exhibit competitive inhibition. Mg2 + which is a catalytically important mediator of PARN activity can release inhibition of RTP and RDP but not RMP. Although many strategies have been proposed for the regulation of PARN activity, very little is known about the modulation of PARN activity by small molecule effectors, such as nucleotides. Our data imply that PARN activity can be modulated by purine nucleotides in vitro, providing an additional simple regulatory mechanism.  相似文献   

2.
Poly(A)-specific ribonuclease (PARN) is a mammalian 3′-exoribonuclease that degrades poly(A) with high specificity. To reveal mechanisms by which poly(A) is recognized by the active site of PARN, we have performed a kinetic analysis using a large repertoire of trinucleotide substrates. Our analysis demonstrated that PARN harbors specificity for adenosine recognition in its active site and that the nucleotides surrounding the scissile bond are critical for adenosine recognition. We propose that two binding pockets, which interact with the nucleotides surrounding the scissile bond, play a pivotal role in providing specificity for the recognition of adenosine residues by the active site of PARN. In addition, we show that PARN, besides poly(A), also quite efficiently degrades poly(U), ∼10-fold less efficiently than poly(A). The poly(U)-degrading property of PARN could be of biological significance as oligo(U) tails recently have been proposed to play a role in RNA stabilization and destabilization.  相似文献   

3.
Abstract

Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m7G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3′–5′ exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.  相似文献   

4.
Poly(A)-specific ribonuclease (PARN) is a cap-interacting and poly(A)-specific 3'-exoribonuclease. Here we have investigated how the cap binding complex (CBC) affects human PARN activity. We showed that CBC, via its 80-kDa subunit (CBP80), inhibited PARN, suggesting that CBC can regulate mRNA deadenylation. The CBC-mediated inhibition of PARN was cap-independent, and in keeping with this, the CBP80 subunit alone inhibited PARN. Our data suggested a new function for CBC, identified CBC as a potential regulator of PARN, and emphasized the importance of communication between the two extreme ends of the mRNA as a key strategy to regulate mRNA degradation. Based on our data, we have proposed a model for CBC-mediated regulation of PARN, which relies on an interaction between CBP80 and PARN. Association of CBC with PARN might have importance in the regulated recruitment of PARN to the nonsense-mediated decay pathway during the pioneer round of translation.  相似文献   

5.
Poly(A)-specific ribonuclease (PARN) is a highly poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. PARN belongs to the DEDD family of nucleases, and four conserved residues are essential for PARN activity, i.e. Asp-28, Glu-30, Asp-292, and Asp-382. Here we have investigated how catalytically important divalent metal ions are coordinated in the active site of PARN. Each of the conserved amino acid residues was substituted with cysteines, and it was found that all four mutants were inactive in the presence of Mg2+. However, in the presence of Mn2+, Zn2+, Co2+, or Cd2+, PARN activity was rescued from the PARN(D28C), PARN(D292C), and PARN(D382C) variants, suggesting that these three amino acids interact with catalytically essential metal ions. It was found that the shortest sufficient substrate for PARN activity was adenosine trinucleotide (A3) in the presence of Mg2+ or Cd2+. Interestingly, adenosine dinucleotide (A) was efficiently hydrolyzed in the presence of Mn2+, Zn2+, or Co2+, suggesting that the substrate length requirement for PARN can be modulated by the identity of the divalent metal ion. Finally, introduction of phosphorothioate modifications into the A substrate demonstrated that the scissile bond non-bridging phosphate oxygen in the pro-R position plays an important role during cleavage, most likely by coordinating a catalytically important divalent metal ion. Based on our data we discuss binding and coordination of divalent metal ions in the active site of PARN.  相似文献   

6.
PARN is a poly(A)-specific ribonuclease that degrades the poly(A) tail of mRNA. We have established conditions for expressing soluble recombinant human PARN. We investigated different Escherichia coli strains, expression vectors, media and growth conditions. We found that PARN expressed from pET33 in BL21(DE3) grown in TB and induced at OD595 approximately 1 with 1 mM IPTG yielded mg amounts of soluble PARN per litre culture. Further, a purification protocol was established to purify PARN. We use His-tag affinity chromatography, HiTrap Q HP ion exchange chromatography and 7-Me-GTP-Sepharose affinity chromatography. This purification procedure render a 90-95% pure PARN. Purified recombinant PARN has enzymatic activity and will be used for further mechanistic and structural studies.  相似文献   

7.
Poly(A)-specific ribonuclease (PARN) is an oligomeric, processive and cap-interacting 3' exoribonuclease that efficiently degrades mRNA poly(A) tails. Here we show that the RNA recognition motif (RRM) of PARN harbors both poly(A) and cap binding properties, suggesting that the RRM plays an important role for the two critical and unique properties that are tightly associated with PARN activity, i.e. recognition and dependence on both the cap structure and poly(A) tail during poly(A) hydrolysis. We show that PARN and its RRM have micromolar affinity to the cap structure by using fluorescence spectroscopy and nanomolar affinity for poly(A) by using filter binding assay. We have identified one tryptophan residue within the RRM that is essential for cap binding but not required for poly(A) binding, suggesting that the cap- and poly(A)-binding sites associated with the RRM are both structurally and functionally separate from each other. RRM is one of the most commonly occurring RNA-binding domains identified so far, suggesting that other RRMs may have both cap and RNA binding properties just as the RRM of PARN.  相似文献   

8.
聚腺苷酸尾的降解对于mRNA的质量控制和转录后基因调控十分重要. 在真核生物中,去腺苷酸化是mRNA降解和翻译沉默的首要限速步骤. 3′核糖核酸外切酶--聚腺苷酸特异性核糖核酸酶(poly(A)-specific ribonuclease,PARN)能够高效降解真核生物mRNA的聚腺苷酸尾. PARN不仅在降解mRNA poly(A)尾中发挥关键的作用,还参与DNA损伤、非编码RNA的加工成熟以及肿瘤等疾病过程. PARN是一种多功能酶分子,本文就PARN发现、结构、催化机制和功能多样性进行综述.  相似文献   

9.
Poly(A)-specific ribonuclease (PARN), a multi-domain dimeric enzyme, is a deadenylase in higher vertebrates and plants with the unique property of cap-dependent catalysis and processivity. We found that PARN is an allosteric enzyme, and potassium ions and the cap analogue were effectors with binding sites located at the RRM domain. The binding of K+ to the entire RRM domain led to an increase of substrate-binding affinity but a decrease in the cooperativity of the substrate-binding site, while the binding of the cap analogue decreased both the catalytic efficiency and the substrate-binding affinity. The dissimilar kinetic properties of the enzymes with and without the entire RRM domain suggested that the RRM domain played a central role in the allosteric communications of PARN regulation. The allostery is proposed to be important to the multi-level regulation of PARN to achieve precise control of the mRNA poly(A) tail length.  相似文献   

10.
Wu M  Reuter M  Lilie H  Liu Y  Wahle E  Song H 《The EMBO journal》2005,24(23):4082-4093
Poly(A)-specific ribonuclease (PARN) is a processive, poly(A)-specific 3' exoribonuclease. The crystal structure of C-terminal truncated human PARN determined in two states (free and RNA-bound forms) reveals that PARNn is folded into two domains, an R3H domain and a nuclease domain similar to those of Pop2p and epsilon186. The high similarity of the active site structures of PARNn and epsilon186 suggests that they may have a similar catalytic mechanism. PARNn forms a tight homodimer, with the R3H domain of one subunit partially enclosing the active site of the other subunit and poly(A) bound in a deep cavity of its nuclease domain in a sequence-nonspecific manner. The R3H domain and, possibly, the cap-binding domain are involved in poly(A) binding but these domains alone do not appear to contribute to poly(A) specificity. Mutations disrupting dimerization abolish both the enzymatic and RNA-binding activities, suggesting that the PARN dimer is a structural and functional unit. The cap-binding domain may act in concert with the R3H domain to amplify the processivity of PARN.  相似文献   

11.
Poly(A)-specific ribonuclease (PARN) is a 3′-exoribonuclease that efficiently degrades poly(A) tails and regulates, in part, mRNA turnover rates. We have previously reported that adenosine- and cytosine-based glucopyranosyl nucleoside analogues with adequate tumour-inhibitory effect could effectively inhibit PARN. In the present study we dissect the mechanism of a more drastic inhibition of PARN by novel glucopyranosyl analogues bearing uracil, 5-fluorouracil or thymine as the base moiety. Kinetic analysis showed that three of the compounds are competitive inhibitors of PARN with Ki values in the low μM concentration and significantly lower (11- to 33-fold) compared to our previous studies. Detailed kinetic analysis of the most effective inhibitor, the uracil-based nucleoside analogue (named U1), revealed slow-binding behaviour. Subsequent molecular docking experiments showed that all the compounds which inhibited PARN can efficiently bind into the active site of the enzyme through specific interactions. The present study dissects the inhibitory mechanism of this novel uracil-based compound, which prolongs its inhibitory effect through a slow-binding and slow-release mode at the active site of PARN, thus contributing to a more efficient inhibition. Such analogues could be used as leading compounds for further rationale design and synthesis of efficient and specific therapeutic agents. Moreover, our data reinforce the notion that human PARN can be established as a novel molecular target of potential anti-cancer agents through lowering mRNA turnover rates.  相似文献   

12.
Poly(A)-specific ribonuclease (PARN) is an oligomeric, processive, and cap-interacting 3' exonuclease. We have studied how the m7G(5')ppp(5')G cap structure affects the activity of PARN. It is shown that the cap has four distinct effects: (i) It stimulates the rate of deadenylation if provided in cis; (ii) it inhibits deadenylation if provided at high concentration in trans; (iii) it stimulates deadenylation if provided at low concentration in trans; and (iv) it increases the processivity of PARN when provided in cis. It is shown that the catalytic and cap binding sites on PARN are separate. The important roles of the 7-methyl group and the inverted guanosine residue of the cap are demonstrated. An active deadenylation complex, consisting of the poly(A)-tailed RNA substrate and PARN, has been identified. Complex formation does not require a cap structure on the RNA substrate. The multiple effects of cap are all accounted for by a simple, kinetic model that takes the processivity of PARN into account.  相似文献   

13.
Poly(A)-specific ribonuclease (PARN) is a deadenylase with three RNA-binding domains (the nuclease, R3H and RRM domains) and a C-terminal domain. PARN participates in diverse physiological processes by regulating mRNA fates through deadenylation. PARN mainly exists as a dimer in dilute solutions. In this research, we found that PARN could self-associate into tetramer and high-order oligomers both in vitro and in living cells. Mutational and spectroscopic analysis indicated that PARN oligomerization was triggered by the R3H domain, which led to the solvent-exposed Trp219 fluorophore to become buried in a solvent-inaccessible microenvironment. The RRM and C-terminal domains also played a role in modulating the dissociation rate of the tetrameric PARN. Enzymatic analysis indicated that tetramerization did not affect the catalytic behavior of the full-length PARN and truncated enzymes containing the RRM domain, which might be caused by the high propensity of the dimeric proteins to self-associate into oligomers. Tetramerization significantly enhanced the catalytic activity and processivity of the truncated form with the removal of the RRM and C-terminal domains. The results herein suggested that self-association might be one of the regulation methods for PARN to achieve a highly regulated deadenylase activity. We propose that self-association may facilitate PARN to concentrate around the target mRNAs by restricted diffusion.  相似文献   

14.
15.
Poly(A)-specific ribonuclease (PARN) is an exoribonuclease/deadenylase that degrades 3′-end poly(A) tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation. Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN’s catalytic mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of DNP-poly(A) amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-poly(A) inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of pharmacophore models as well as novel modulators of PARN with therapeutic potential.  相似文献   

16.
Poly(A)-specific ribonuclease (PARN) catalyzes the degradation of mRNA poly(A) tail to regulate translation efficiency and mRNA decay in higher eukaryotic cells. The full-length PARN is a multi-domain protein containing the catalytic nuclease domain, the R3H domain, the RRM domain and the C-terminal intrinsically unstructured domain (CTD). The roles of the three well-structured RNA-binding domains have been extensively studied, while little is known about CTD. In this research, the impact of CTD on PARN stability and aggregatory potency was studied by comparing the thermal inactivation and denaturation behaviors of full-length PARN with two N-terminal fragments lacking CTD. Our results showed that K+ induced additional regular secondary structures and enhanced PARN stability against heat-induced inactivation, unfolding and aggregation. CTD prevented PARN from thermal inactivation but promoted thermal aggregation to initiate at a temperature much lower than that required for inactivation and unfolding. Blue-shift of Trp fluorescence during thermal transitions suggested that heat treatment induced rearrangements of domain organizations. CTD amplified the stabilizing effect of K+, implying the roles of CTD was mainly achieved by electrostatic interactions. These results suggested that CTD might dynamically interact with the main body of the molecule and release of CTD promoted self-association via electrostatic interactions.  相似文献   

17.
Deadenylation is the initial and often rate-limiting step in the main pathways of eukaryotic mRNA decay. Poly(A)-specific ribonuclease (PARN) is a eukaryotic enzyme that efficiently degrades mRNA poly(A) tails. Structural and functional studies have shown that human PARN is composed of at least three functional domains, i.e. the catalytic nuclease domain and two RNA binding domains, the R3H and the RNA recognition motif (RRM), respectively. However, the complete structure of the full length protein is still unknown. We have investigated the global architecture of human PARN by atomic force microscopy (AFM) imaging in buffered milieu and report for the first time the dimensions of the full length protein at subnanometer resolution. The AFM images of single PARN molecules reveal compact ellipsoidal dimers (10.9 × 7.6 × 4.6nm). The dimeric form of PARN was confirmed by dynamic light scattering (DLS) measurements that rendered a molecular weight of 161 kDa, in accordance with previous crystal structures of PARN fragments showing a dimeric composition. We discuss a putative internal arrangement of three functional domains within the full length PARN dimer.  相似文献   

18.
Poly(A)-specific ribonuclease (PARN) is a processive 3′-exoribonuclease involved in the decay of eukaryotic mRNAs. Interestingly, PARN interacts not only with the 3′ end of the mRNA but also with its 5′ end as PARN contains an RRM domain that specifically binds both the poly(A) tail and the 7-methylguanosine (m7G) cap. The interaction of PARN with the 5′ cap of mRNAs stimulates the deadenylation activity and enhances the processivity of this reaction. We have determined the crystal structure of the PARN-RRM domain with a bound m7G triphosphate nucleotide, revealing a novel binding mode for the m7G cap. The structure of the m7G binding pocket is located outside of the canonical RNA-binding surface of the RRM domain and differs significantly from that of other m7G-cap-binding proteins. The crystal structure also shows a remarkable conformational flexibility of the RRM domain, leading to a perfect exchange of two α-helices with an adjacent protein molecule in the crystal lattice.  相似文献   

19.
Deadenylases specifically catalyze the degradation of eukaryotic mRNA poly(A) tail in the 3′- to 5′-end direction with the release of 5′-AMP as the product. Among the deadenylase family, poly(A)-specific ribonuclease (PARN) is unique in its domain composition, which contains three potential RNA-binding domains: the catalytic nuclease domain, the R3H domain and the RRM domain. In this research, we investigated the roles of these RNA-binding domains by comparing the structural features and enzymatic properties of mutants lacking either one or two of the three RNA-binding domains. The results showed that the R3H domain had the ability to bind various oligonucleotides at the micromolar level with no oligo(A) specificity. The removal of the R3H domain dissociated PARN into monomers, which still possessed the RNA-binding ability and catalytic functions. Unlike the critical role of the RRM domain in PARN processivity, the removal of the R3H domain did not affect the catalytic pattern of PARN. Our results suggested that both R3H and RRM domains were essential for the high affinity of long poly(A) substrate, but the R3H domain did not contribute to the substrate recognition of PARN. Compared to the RRM domain, the R3H domain played a more important role in the structural integrity of the dimeric PARN. The multiple RNA-binding domain architecture endows PARN the property of highly efficient catalysis in a highly processive mode.  相似文献   

20.
Poly(A)-specific ribonuclease (PARN) is the only mammalian exoribonuclease characterized thus far with high specificity for degrading the mRNA poly(A) tail. PARN belongs to the RNase D family of nucleases, a family characterized by the presence of four conserved acidic amino acid residues. Here, we show by site-directed mutagenesis that these residues of human PARN, i.e. Asp(28), Glu(30), Asp(292), and Asp(382), are essential for catalysis but are not required for stabilization of the PARN x RNA substrate complex. We have used iron(II)-induced hydroxyl radical cleavage to map Fe(2+) binding sites in PARN. Two Fe(2+) binding sites were identified, and three of the conserved acidic amino acid residues were important for Fe(2+) binding at these sites. Furthermore, we show that the apparent dissociation constant ((app)K(d)) values for Fe(2+) binding at both sites were affected in PARN polypeptides in which the conserved acidic amino acid residues were substituted to alanine. This suggests that these residues coordinate divalent metal ions. We conclude that the four conserved acidic amino acids are essential residues of the PARN active site and that the active site of PARN functionally and structurally resembles the active site for 3'-exonuclease domain of Escherichia coli DNA polymerase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号