首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Magnesium is essential for the catalysis reaction of Escherichia coli primase, the enzyme synthesizing primer RNA chains for initiation of DNA replication. To map the Mg(2+) binding site in the catalytic center of primase, we have employed the iron cleavage method in which the native bound Mg(2+) ions were replaced with Fe(2+) ions and the protein was then cleaved in the vicinity of the metal binding site by adding DTT which generated free hydroxyl radicals from the bound iron. Three Fe(2+) cleavages were generated at sites designated I, II, and III. Adding Mg(2+) or Mn(2+) ions to the reaction strongly inhibited Fe(2+) cleavage; however, adding Ca(2+) or Ba(2+) ions had much less effect. Mapping by chemical cleavage and subsequent site-directed mutagensis demonstrated that three acidic residues, Asp345 and Asp347 of a conserved DPD sequence and Asp269 of a conserved EGYMD sequence, were the amino acid residues that chelated Mg(2+) ions in the catalytic center of primase. Cleavage data suggested that binding to D345 is significantly stronger than to D347 and somewhat stronger than to D269.  相似文献   

2.
Poly(A)-specific ribonuclease (PARN) is a highly poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. PARN belongs to the DEDD family of nucleases, and four conserved residues are essential for PARN activity, i.e. Asp-28, Glu-30, Asp-292, and Asp-382. Here we have investigated how catalytically important divalent metal ions are coordinated in the active site of PARN. Each of the conserved amino acid residues was substituted with cysteines, and it was found that all four mutants were inactive in the presence of Mg2+. However, in the presence of Mn2+, Zn2+, Co2+, or Cd2+, PARN activity was rescued from the PARN(D28C), PARN(D292C), and PARN(D382C) variants, suggesting that these three amino acids interact with catalytically essential metal ions. It was found that the shortest sufficient substrate for PARN activity was adenosine trinucleotide (A3) in the presence of Mg2+ or Cd2+. Interestingly, adenosine dinucleotide (A) was efficiently hydrolyzed in the presence of Mn2+, Zn2+, or Co2+, suggesting that the substrate length requirement for PARN can be modulated by the identity of the divalent metal ion. Finally, introduction of phosphorothioate modifications into the A substrate demonstrated that the scissile bond non-bridging phosphate oxygen in the pro-R position plays an important role during cleavage, most likely by coordinating a catalytically important divalent metal ion. Based on our data we discuss binding and coordination of divalent metal ions in the active site of PARN.  相似文献   

3.
Site-directed mutagenesis was employed to map and characterize Ca(2+)-binding sites in annexin II, a member of the annexin family of Ca(2+)- and phospholipid-binding proteins which serves as a major cellular substrate for the tyrosine kinase encoded by the src oncogene. Several single amino acid substitutions were introduced in the human annexin II and the various mutant proteins were scored for their affinity towards Ca2+ in different assays. The data support our previous finding [Thiel, C., Weber, K. and Gerke V. (1991) J. Biol. Chem. 266, 14,732-14,739] that a Ca(2+)-binding site is present in the third of the four repeat segments which comprise the 33-kDa protein core of annexin II. In addition to Gly206 and Thr207, which are localized in the highly conserved endonexin fold of the third repeat, Glu246 is involved in the formation of this site. Thus the architecture of this Ca(2+)-binding site in solution is very similar, if not identical, to that of Ca2+ sites identified recently in annexin V crystals [Huber, R., Schneider, M., Mayr, I., R?misch, J. and Paques, E.-P. (1990) FEBS Lett. 275, 15-21]. In addition to the site in repeat 3, we have mapped sites of presumably similar architecture in repeats 2 and 4 of annexin II. Again, an acidic amino acid which is located 40 residues C-terminal to the conserved glycine at position 4 of the endonexin fold is indispensable for high-affinity Ca2+ binding: Asp161 in the second and Asp321 in the fourth repeat. In contrast, repeat 1 does not contain an acidic amino acid at a corresponding position and also shows deviations from the other repeats in the sequence surrounding the conserved glycine. These results on annexin II together with the crystallographic information on annexin V reveal that annexins can differ in the position of the Ca2+ sites. Ca(2+)-binding sites of similar structure are present in repeats 2, 3, and 4 of annexin II while in annexin V they occur in repeats 1, 2, and 4. We also synthesized an annexin II derivative with mutations in all three Ca2+ sites. This molecule shows a greatly reduced affinity for the divalent cation. However, it is still able to bind Ca2+, indicating the presence of (an) additional Ca2+ site(s) of presumably different architecture.  相似文献   

4.
Biological functions for a large class of calmodulin-related proteins, such as target protein activation and Ca(2+) buffering, are based on fine-tuned binding and release of Ca(2+) ions by pairs of coupled EF-hand metal binding sites. These are abundantly filled with acidic residues of so far unknown ionization characteristics, but assumed to be essential for protein function in their ionized forms. Here we describe the measurement and modeling of pK(a) values for all aspartic and glutamic acid residues in apo calbindin D(9k), a representative of calmodulin-related proteins. We point out that while all the acidic residues are ionized predominantly at neutral pH, the onset of proton uptake by Ca(2+) ligands with high pK(a) under these conditions may have functional implications. We also show that the negative electrostatic potential is focused at the bidental Ca(2+) ligand of each site, and that the potential is significantly more negative at the N-terminal binding site.  相似文献   

5.
The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca(2+) binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca(2+) binding to sites III and IV, and we present a model showing that this could increase Ca(2+) binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ motif (amino acids 39-62), and an adjacent acidic cluster of amino acids (amino acids 28-40). A synthetic peptide spanning residues 28-62 faithfully mimics intact PEP-19 with respect to increasing the rates of Ca(2+) association and dissociation, as well as binding preferentially to the C-domain of CaM. In contrast, a peptide encoding only the core IQ motif does not modulate Ca(2+) binding, and binds to multiple sites on CaM. A peptide that includes only the acidic region does not bind to CaM. These results show that PEP-19 has a novel acidic/IQ CaM regulatory motif in which the IQ sequence provides a targeting function that allows binding of PEP-19 to CaM, whereas the acidic residues modify the nature of this interaction, and are essential for modulating Ca(2+) binding to the C-domain of CaM.  相似文献   

6.
Human beta1,3-glucuronyltransferase I (GlcAT-I) is a central enzyme in the initial steps of proteoglycan synthesis. GlcAT-I transfers a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region trisaccharide Gal beta 1-3Gal beta 1-4Xyl covalently bound to a Ser residue at the glycosaminylglycan attachment site of proteoglycans. We have now determined the crystal structure of GlcAT-1 at 2.3 A in the presence of the donor substrate product UDP, the catalytic Mn(2+) ion, and the acceptor substrate analog Gal beta 1-3Gal beta 1-4Xyl. The enzyme is a alpha/beta protein with two subdomains that constitute the donor and acceptor substrate binding site. The active site residues lie in a cleft extending across both subdomains in which the trisaccharide molecule is oriented perpendicular to the UDP. Residues Glu(227), Asp(252), and Glu(281) dictate the binding orientation of the terminal Gal-2 moiety. Residue Glu(281) is in position to function as a catalytic base by deprotonating the incoming 3-hydroxyl group of the acceptor. The conserved DXD motif (Asp(194), Asp(195), Asp(196)) has direct interaction with the ribose of the UDP molecule as well as with the Mn(2+) ion. The key residues involved in substrate binding and catalysis are conserved in the glucuronyltransferase family as well as other glycosyltransferases.  相似文献   

7.
Holliday junctions are key intermediates in both homologous recombination and DNA repair, and are also formed from replication forks stalled at lesions in the template strands. Their resolution is critical for chromosome segregation and cell viability, and is mediated by a class of small, homodimeric endonucleases that bind the structure and cleave the DNA. All the enzymes studied require divalent metal ions for strand cleavage and their active centres are characterised by conserved aspartate/glutamate residues that provide ligands for metal binding. Sequence alignments reveal that they also contain a number of conserved basic residues. We used site-directed mutagenesis to investigate such residues in the RusA resolvase. RusA is a 120 amino acid residue polypeptide that can be activated in Escherichia coli to promote recombination and repair in the absence of the Ruv proteins. The RuvA, RuvB and RuvC proteins form a complex on Holliday junction DNA that drives coupled branch migration (RuvAB) and resolution (RuvC) reactions. In contrast to RuvC, the RusA resolvase does not interact directly with a branch migration motor, which simplifies analysis of its resolution activity. Catalysis depends on three highly conserved acidic residues (Asp70, Asp72 and Asp91) that define the catalytic centre. We show that Lys76, which is invariant in RusA sequences, is essential for catalysis, but not for DNA binding, and that an invariant asparagine residue (Asn73) is required for optimal activity. Analysis of DNA binding revealed that RusA may interact with one face of an open junction before manipulating its conformation in the presence of Mg(2+) as part of the catalytic process. A well-conserved arginine residue (Arg69) is linked with this critical stage. These findings provide the first insights into the roles played by basic residues in DNA binding and catalysis by a Holliday junction resolvase.  相似文献   

8.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase) uses PP(i) as an energy donor and requires free Mg(2+) for enzyme activity and stability. To determine the catalytic domain, we analyzed charged residues (Asp(253), Lys(261), Glu(263), Asp(279), Asp(283), Asp(287), Asp(723), Asp(727), and Asp(731)) in the putative PP(i)-binding site and two conserved acidic regions of mung bean V-PPase by site-directed mutagenesis and heterologous expression in yeast. Amino acid substitution of the residues with alanine and conservative residues resulted in a marked decrease in PP(i) hydrolysis activity and a complete loss of H(+) transport activity. The conformational change of V-PPase induced by the binding of the substrate was reflected in the susceptibility to trypsin. Wild-type V-PPase was completely digested by trypsin but not in the presence of Mg-PP(i), while two V-PPase mutants, K261A and E263A, became sensitive to trypsin even in the presence of the substrate. These results suggest that the second acidic region is also implicated in the substrate hydrolysis and that at least two residues, Lys(261) and Glu(263), are essential for the substrate-binding function. From the observation that the conservative mutants K261R and E263D showed partial activity of PP(i) hydrolysis but no proton pump activity, we estimated that two residues, Lys(261) and Glu(263), might be related to the energy conversion from PP(i) hydrolysis to H(+) transport. The importance of two residues, Asp(253) and Glu(263), in the Mg(2+)-binding function was also suggested from the trypsin susceptibility in the presence of Mg(2+). Furthermore, it was found that the two acidic regions include essential common motifs shared among the P-type ATPases.  相似文献   

9.
Cyclic nucleotide monophosphate (cNMP) hydrolysis in bacteria and eukaryotes is brought about by distinct cNMP phosphodiesterases (PDEs). Since these enzymes differ in amino acid sequence and properties, they have evolved by convergent evolution. Cyclic NMP PDEs cleave cNMPs to NMPs, and the Rv0805 gene product is, to date, the only identifiable cNMP PDE in the genome of Mycobacterium tuberculosis. We have shown that Rv0805 is a cAMP/cGMP dual specificity PDE, and is unrelated in amino acid sequence to the mammalian cNMP PDEs. Rv0805 is a dimeric, Fe(3+)-Mn(2+) binuclear PDE, and mutational analysis demonstrated that the active site metals are co-ordinated by conserved aspartate, histidine and asparagine residues. We report here the structure of the catalytic core of Rv0805, which is distantly related to the calcineurin-like phosphatases. The crystal structure of the Rv0805 dimer shows that the active site metals contribute to dimerization and thus play an additional structural role apart from their involvement in catalysis. We also present the crystal structures of the Asn97Ala mutant protein that lacks one of the Mn(2+) co-ordinating residues as well as the Asp66Ala mutant that has a compromised cAMP hydrolytic activity, providing a structural basis for the catalytic properties of these mutant proteins. A molecule of phosphate is bound in a bidentate manner at the active site of the Rv0805 wild-type protein, and cacodylate occupies a similar position in the crystal structure of the Asp66Ala mutant protein. A unique substrate binding pocket in Rv0805 was identified by computational docking studies, and the role of the His140 residue in interacting with cAMP was validated through mutational analysis. This report on the first structure of a bacterial cNMP PDE thus significantly extends our molecular understanding of cAMP hydrolysis in class III PDEs.  相似文献   

10.
Schöttler S  Wende W  Pingoud V  Pingoud A 《Biochemistry》2000,39(51):15895-15900
The monomeric homing endonuclease PI-SceI harbors two catalytic centers which cooperate in the cleavage of the two strands of its extended recognition sequence. Structural and biochemical data suggest that catalytic center I contains Asp218, Asp229, and Lys403, while catalytic center II contains Asp326, Thr341, and Lys301. The analogy with I-CreI, for which the cocrystal structure with the DNA substrate has been determined, suggests that Asp218 and Asp229 in catalytic center I and Asp326 and Thr341 in catalytic center II serve as ligands for Mg(2+), the essential divalent metal ion cofactor which can be replaced by Mn(2+) in vitro. We have carried out a mutational analysis of these presumptive Mg(2+) ligands. The variants carrying an alanine or asparagine substitution bind DNA, but (with the exception of the D229N variant) are inactive in DNA cleavage in the presence of Mg(2+), demonstrating that these residues are important for cleavage. Our finding that the PI-SceI variants carrying single cysteine substitutions at these positions are inactive in the presence of the oxophilic Mg(2+) but active in the presence of the thiophilic Mn(2+) suggests that the amino acid residues at these positions are involved in cofactor binding. From the fact that in the presence of Mn(2+) the D218C and D326C variants are even more active than the wild-type enzyme, it is concluded that Asp218 and Asp326 are the principal Mg(2+) ligands of PI-SceI. On the basis of these findings and the available structural information, a model for the composition of the two Mg(2+) binding sites of PI-SceI is proposed.  相似文献   

11.
Acyl carrier protein (ACP), a small protein essential for bacterial growth and pathogenesis, interacts with diverse enzymes during the biosynthesis of fatty acids, phospholipids, and other specialized products such as lipid A. NMR and hydrodynamic studies have previously shown that divalent cations stabilize native helical ACP conformation by binding to conserved acidic residues at two sites (A and B) at either end of the "recognition" helix II. To examine the roles of these amino acids in ACP structure and function, site-directed mutagenesis was used to replace individual site A (Asp-30, Asp-35, Asp-38) and site B (Glu-47, Glu-53, Asp-56) residues in recombinant Vibrio harveyi ACP with the corresponding amides, along with combined mutations at each site (SA, SB) or both sites (SA/SB). Like native V. harveyi ACP, all individual mutants were unfolded at neutral pH but adopted a helical conformation in the presence of millimolar Mg(2+) or upon fatty acylation. Mg(2+) binding to sites A or B independently stabilized native ACP conformation, whereas mutant SA/SB was folded in the absence of Mg(2+), suggesting that charge neutralization is largely responsible for ACP stabilization by divalent cations. Asp-35 in site A was critical for holo-ACP synthase activity, while acyl-ACP synthetase and UDP-N-acetylglucosamine acyltransferase (LpxA) activities were more affected by mutations in site B. Both sites were required for fatty acid synthase activity. Overall, our results indicate that divalent cation binding site mutations have predicted effects on ACP conformation but unpredicted and variable consequences on ACP function with different enzymes.  相似文献   

12.
The high-resolution structure of the non-haem ferritin from Escherichia coli (EcFtnA) is presented together with those of its Fe(3+) and Zn(2+) derivatives, this being the first high-resolution X-ray analysis of the iron centres in any ferritin.The binding of both metals is accompanied by small changes in the amino acid ligand positions. Mean Fe(A)(3+)-Fe(B)(3+) and Zn(A)(2+)-Zn(B)(2+) distances are 3.24 A and 3.43 A, respectively. In both derivatives, metal ions at sites A and B are bridged by a glutamate side-chain (Glu50) in a syn-syn conformation. The Fe(3+) derivative alone shows a third metal site (Fe( C)( 3+)) joined to Fe(B)(3+) by a long anti-anti bidentate bridge through Glu130 (mean Fe(B)(3+)-Fe(C)(3+) distance 5.79 A). The third metal site is unique to the non-haem bacterial ferritins.The dinuclear site lies at the inner end of a hydrophobic channel connecting it to the outside surface of the protein shell, which may provide access for dioxygen and possibly for metal ions shielded by water. Models representing the possible binding mode of dioxygen to the dinuclear Fe(3+) pair suggest that a gauche micro-1,2 mode may be preferred stereochemically.Like those of other ferritins, the 24 subunits of EcFtnA are folded as four-helix bundles that assemble into hollow shells and both metals bind at dinuclear centres in the middle of the bundles. The structural similarity of EcFtnA to the human H chain ferritin (HuHF) is remarkable (r.m.s. deviation of main-chain atoms 0.66 A) given the low amino acid sequence identity (22 %). Many of the conserved residues are clustered at the dinuclear centre but there is very little conservation of residues making inter-subunit interactions.  相似文献   

13.
Deuterolysin (EC 3.4.24.39; formerly designated as neutral proteinase II) from Aspergillus oryzae, which contains 1 g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. Active-site determination of the recombinant enzyme expressed in Escherichia coli was performed by site-directed mutagenesis. Substitutions of His(128) and His(132) with Arg, of Glu(129) with Gln or Asp, of Asp(143) with Asn or Glu, of Asp(164) with Asn, and of Tyr(106) with Phe resulted in almost complete loss of the activity of the mutant enzymes. It can be concluded that His(128), His(132), and Asp(164) provide the Zn(2+) ligands of the enzyme according to a (65)Zn binding assay. Based on site-directed mutagenesis experiments, it was demonstrated that the three essential amino acid residues Glu(129), Asp(143), and Tyr(106) are catalytically crucial residues in the enzyme. Glu(129) may be implicated in a central role in the catalytic function. We conclude that deuterolysin is a member of a family of Zn(2+) metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand.  相似文献   

14.
The sequence of 10 amino acids (ICSDKTGTLT357) at the site of phosphorylation of the rabbit fast twitch muscle Ca2+-ATPase is highly conserved in the family of cation-transporting ATPases. We changed each of the residues flanking Asp351, Lys352, and Thr353 to an amino acid differing in size or polarity and assayed the mutant for Ca2+ transport activity and autophosphorylation with ATP or P1. We found that conservative changes (Ile----Leu, Thr----Ser, Gly----Ala) or the alteration of Cys349 to alanine did not destroy Ca2+ transport activity or phosphoenzyme formation, whereas nonconservative changes (Ile----Thr, Leu----Ser) did disrupt function. These results indicate that very conservative changes in the amino acids flanking Asp351, Lys352, and Thr353 can be accommodated. A number of mutations were also introduced into amino acids predicted to be involved in nucleotide binding, in particular those in the conserved sequences KGAPE519, RDAGIRVIMITGDNK629, and KK713. Our results indicate that amino acids KGAPE519, Arg615, Gly618, Arg620, and Lys712-Lys713 are not essential for nucleotide binding, although changes to Lys515 diminished Ca2+ transport activity but not phosphoenzyme formation. Changes of Gly626 and Asp627 abolished phosphoenzyme formation with both ATP and Pi, indicating that these residues may contribute to the conformation of the catalytic center.  相似文献   

15.
Fcp1 is an essential protein serine phosphatase that dephosphorylates the C-terminal domain (CTD) of RNA polymerase II. By testing the effects of serial N- and C-terminal deletions of the 723-amino acid Schizosaccharomyces pombe Fcp1, we defined a minimal phosphatase domain spanning amino acids 156-580. We employed site-directed mutagenesis (introducing 24 mutations at 14 conserved positions) to locate candidate catalytic residues. We found that alanine substitutions for Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298) abrogated the phosphatase activity with either p-nitrophenyl phosphate or CTD-PO(4) as substrates. Structure-activity relationships were determined by introducing conservative substitutions at each essential position. Our results, together with previous mutational studies, highlight a constellation of seven amino acids (Asp(170), Asp(172), Arg(223), Asp(258), Lys(280), Asp(297), and Asp(298)) that are conserved in all Fcp1 orthologs and likely comprise the active site. Five of these residues (Asp(170), Asp(172), Lys(280), Asp(297), and Asp(298)) are conserved at the active site of T4 polynucleotide 3'-phosphatase, suggesting that Fcp1 and T4 phosphatase are structurally and mechanistically related members of the DXD phosphotransferase superfamily.  相似文献   

16.
The catalytic domain of chitobiase (beta-N-1-4 acetylhexosaminidase) from Serratia marcescens, is an alpha/beta TIM-barrel. This enzyme belongs to family 20 of glycosyl hydrolases in which a conserved amino acid pair, aspartate-glutamate, is present (Asp539-Glu540). It was proposed that catalysis by this enzyme family is carried out by glutamate 540 acting as a proton donor and by the acetamido group of the substrate as a nucleophile. We investigated the role of Asp539 and Glu540 by site-directed mutagenesis, biochemical characterization and by structural analyses of chitobiase -substrate co-crystals. We found that both residues are essential for chitobiase activity. The mutations, however, led to subtle changes in the catalytic site. Our results support the model that Glu540 acts as the proton donor and that Asp539 acts in several different ways. Asp539 restrains the acetamido group of the substrate in a specific orientation by forming a hydrogen bond with N2 of the non-reduced (-1) sugar. In addition, this residue participates in substrate binding. It is also required for the correct positioning of Glu540 and may provide additional negative charge at the active site. Thus, these biochemical and structural studies provide a molecular explanation for the functional importance and conservation of these residues.  相似文献   

17.
The "ribulose phosphate binding" superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common (beta/alpha)(8)-barrel ancestor. The superfamily includes d-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-l-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice [Jelakovic, S., Kopriva, S., Suss, K. H., and Schulz, G. E. (2003) J. Mol. Biol. 326, 127-35] and Plasmodium falciparum [Caruthers, J., Bosch, J., Bucker, F., Van Voorhis, W., Myler, P., Worthey, E., Mehlin, C., Boni, E., De Titta, G., Luft, J., Kalyuzhniy, O., Anderson, L., Zucker, F., Soltis, M., and Hol, W. G. J. (2006) Proteins 62, 338-42], the RPE from Streptococcus pyogenes is activated by Zn(2+) which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn(2+) and inactive apoenzyme cannot be prepared, the affinity for Zn(2+) is decreased by alanine substitutions for the two histidine residues that coordinate the Zn(2+) ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn(2+). The crystal structure of the RPE was solved at 1.8 A resolution in the presence of d-xylitol 5-phosphate, an inert analogue of the d-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn(2+) that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn(2+) and participate as acid/base catalysts are not conserved. We conclude that only the phosphate binding motif located at the ends of the seventh and eighth beta-strands of the (beta/alpha)(8)-barrel is functionally conserved among RPE, OMPDC, and KGPDC, consistent with the hypothesis that the members of the "ribulose phosphate binding" (beta/alpha)(8)-barrel "superfamily" as defined by SCOP have not evolved by evolutionary processes involving the intact (beta/alpha)(8)-barrel. Instead, this "superfamily" may result from assembly from smaller modules, including the conserved phosphate binding motif associated with the C-terminal (beta/alpha)(2)-quarter barrel.  相似文献   

18.
The rat hepatic asialoglycoprotein receptor mediates clearance of galactose- and N-acetylgalactosamine-terminated glycoproteins by endocytosis, binding ligands through a C-type, Ca(2+)-dependent carbohydrate-recognition domain (CRD) at extracellular pH and releasing them at lower pH in endosomes. At physiological Ca(2+) concentrations, the midpoint for ligand release from the CRD of the major subunit of the receptor is pH 7.1. In contrast, the midpoint is pH 5.0 for a galactose-binding derivative of the homologous C-type CRD of serum mannose-binding protein, which would thus not efficiently release ligand at an endosomal pH of 5.4. Site-directed mutagenesis of the CRD from the major subunit of the asialoglycoprotein receptor has been used to identify residues that are essential for efficient release of ligand at endosomal pH. The effects of changes to residues His(256), Asp(266), and Arg(270) singly and in combination indicate that these residues reduce the affinity of the CRD for Ca(2+), so that ligands are released at physiological Ca(2+) concentrations. The proximity of these three residues to the ligand-binding site at Ca(2+) site 2 of the domain suggests that they form a pH-sensitive switch for Ca(2+) and ligand binding. Introduction of histidine and aspartic acid residues into the mannose-binding protein CRD at positions equivalent to His(256) and Asp(266) raises the pH for half-maximal binding of ligand to 6.1. The results, as well as sequence comparisons with other C-type CRDs, confirm the importance of these residues in conferring appropriate pH dependence in this family of domains.  相似文献   

19.
UDP-3-O-(acyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the second step in the biosynthesis of lipid A in Gram-negative bacteria. Compounds targeting this enzyme are proposed to chelate the single, essential zinc ion bound to LpxC and have been demonstrated to stop the growth of Escherichia coli. A comparison of LpxC sequences from diverse bacteria identified 10 conserved His, Asp, and Glu residues that might play catalytic roles. Each amino acid was altered in both E. coli and Aquifex aeolicus LpxC and the catalytic activities of the variants were determined. Three His and one Asp residues (H79, H238, D246, and H265) are essential for catalysis based on the low activities (<0.1% of wild-type LpxC) of mutants with alanine substitutions at these positions. H79 and H238 likely coordinate zinc; the Zn(2+) content of the purified variant proteins is low and the specific activity is enhanced by the addition of Zn(2+). The third side chain to coordinate zinc is likely either H265 or D246 and a fourth ligand is likely a water molecule, as indicated by the hydroxamate inhibition, suggesting a His(3)H(2)O or His(2)AspH(2)O Zn(2+)-polyhedron in LpxC. The decreased zinc inhibition of LpxC mutants at E78 suggests that this side chain may coordinate a second, inhibitory Zn(2+) ion. Given the absence of any known Zn(2+) binding motifs, the active site of LpxC may have evolved differently than other well-studied zinc metalloamidases, a feature that should aid in the design of safe antibiotics.  相似文献   

20.
Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (serpin) superfamily, possesses anti-angiogenic and neurotrophic activities. PEDF has been reported to bind to extracellular matrix (ECM) components such as collagens and glycosaminoglycans (GAGs). In this study, to determine the binding sites for collagens and GAGs, we analyzed the interaction of recombinant mouse PEDF (rPEDF) with collagen I and heparin. By utilizing residue-specific chemical modification and site-directed mutagenesis techniques, we revealed that the acidic amino acid residues on PEDF (Asp(255), Asp(257), and Asp(299)) are critical to collagen binding, and three clustered basic amino acid residues (Arg(145), Lys(146), and Arg(148)) are necessary for heparin binding. Mapping of these residues on the crystal structure of human PEDF (Simonovic, M., Gettins, P. G. W., and Volz, K. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 11131-11135) demonstrated that the collagen-binding site is oriented toward the opposite side of the highly basic surface where the heparin-binding site is localized. These results indicate that PEDF possesses dual binding sites for different ECM components, and this unique localization of ECM-binding sites implies that the binding to ECM components could regulate PEDF activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号