首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
骨折愈合是一个独特的多步骤过程,最终可导致正常的骨的解剖和骨的功能的恢复,而不像其他组织修复过程往往最终以瘢痕组织结束。骨折后形成大量修复性骨痂组织,包绕骨折部位。骨痂中存在两种骨形成方式:即膜内化骨和软骨内化骨。系统激素和局部生长因子参与调节骨折愈合过程中的膜内化骨、软骨形成和软骨内化骨。在软骨性骨痂的形成与吸收、骨性骨痂的形成与重塑的动态过程中,新生血管的形成起重要作用。在众多的调节  相似文献   

2.
目的:探讨Jmjd3和Ezh2在小鼠骨折愈合过程中的作用。方法:以软骨细胞条件性基因敲除8-10周龄小鼠为研究对象,按基因型随机分为6组,每组5只:其中实验组基因型为Jmjd3~(fl/fl)/Col2a1-Cre ~(ERT2),Ezh2~(fl/fl)/Col2a1-Cre ~(ERT2)或Jmjd~(3fl/fl)/Ezh2~(fl/fl)/Col2a1-Cre ~(ERT2);对照组基因型为Jmjd3~(fl/fl),Ezh2~(fl/fl)或Jmjd3~(fl/fl)/Ezh2~(fl/fl)。建立骨髓腔中插入固定针的稳定性胫骨骨折模型,于骨折术后3天、5天和7天腹腔注射Tamoxifen 3 mg/次/天。各组于术后3W处死,并于骨折部位取材行X线片及组织学检查。结果:通过连续的X线影像学及HE组织切片观察,骨折术后3周是判断小鼠骨折愈合情况的最佳时间点。X线片发现骨折术后3W时软骨细胞内Jmjd3被敲除小鼠的骨折线较对照组明显且骨化骨痂大小和密度均较低,HE切片显示骨化骨痂面积显著低于对照组,而软骨骨痂面积高于对照组;相反,X线片发现Ezh2被敲除小鼠的骨痂面积明显大于对照组,且密度高于对照组,HE组织切片显示Ezh2被敲除的小鼠的骨化骨痂的钙化程度更高,骨小梁更粗更密集。最后,X线片和HE切片均没有发现软骨细胞Jmjd3和Ezh2同时被敲除的小鼠与对照小鼠之间存在明显差异。结论:以软骨细胞特异基因敲除小鼠为基础,我们首次发现Jmjd3具有促进骨折愈合的作用,而Ezh2具有抑制骨折愈合的作用;并且发现Jmjd3和Ezh2对抗调节小鼠的骨折愈合过程,这些发现为骨折愈合治疗提供了新的分子实验基础。  相似文献   

3.
目的:观察生长激素-海藻酸钠-壳聚糖微胶囊促进兔挠骨骨折愈合的作用。方法:实验将新西兰兔80只,在制备新西兰兔右桡骨中段3mm骨缺损模型的基础上,随机分成四组:口服生长激素-海藻酸钠-壳聚糖微胶囊组、皮下注射生长激素组、口服空微胶囊组和生理盐水对照组。实验组口服生长激素-海藻酸钠-壳聚糖微胶囊和皮下注射生长激素,对照组口服空微胶囊。并于术后9、17、30、42d定期HE染色和地衣红染色观察各组的骨折愈合情况。结果:本实验HE染色结果表明,由于在骨缺损部位成纤维细胞产生的大量胶原纤维为基质,形成透明软骨及成骨细胞,骨小梁生长的基础,连接骨痂形成和骨髓腔贯通。而观察到生长激素微胶囊组各期提前生长及改建提前的形态。地衣红染色图像结果分析及直方图的分析表明:生长激素微胶囊组胶原纤维产生促进骨小梁提前形成,进而骨折处骨性骨痂的提前愈合和髓腔的提前贯通。结论:生长激素-海藻酸钠-壳聚糖微胶囊口服能促进骨折修复愈合。  相似文献   

4.
骨折磁疗愈合仪治疗骨折延迟愈合   总被引:3,自引:0,他引:3  
骨折延迟愈合是指骨折在正常愈合所需的时间内,仍未能达到骨折完全愈合的标准。临床症状与体征:4个月的异常活动;骨端在移位或试做负重时,产生疼痛;畸形与肌萎缩;负重功能丧失;骨传导音降低。我科应用骨折磁疗愈合仪治疗骨折延迟愈合30例收到了满意效果。30例患者中应用骨折磁疗愈合仪40天骨痂形成的20例,50天骨痂形成的10例。治疗方法1将患肢固定在不负重石膏管形内,安置线圈时须用X线准确定位,使两线圈中心与骨延迟愈合部位对准,并彼此相对平行。2两线圈固定后,将线圈插入仪器前面板输出插座中,开启电源开关…  相似文献   

5.
目的:了解胶原膜作为生长因子缓释材料治疗颌骨骨折的应用前景。方法:将100μg的rhBMP-2用1ml的bFGF溶液完全溶解;用移液器移出40μl的该溶液,滴加到面积为0.5cm×1cm的胶原膜组织块中,冻干后制成生长因子缓释系统;在12只新西兰大白兔两侧制成人工下颌骨骨折模型,左侧置放bFGF/BMP/胶原膜;右侧均为空白对照;术后2、4、12周行临床大体观察及X线片观察。结果:实验组骨折愈合速度明显快于对照组。术后2周,X线结果显示bFGF/BMP/胶原膜组骨折断端边缘模糊。对照组骨折线明显。术后4周,X线结果显示bFGF/BMP/胶原膜骨折线基本不可见,骨折对位良好,断端边缘基本消失,骨折无错位。对照组骨折下缘可见纤维性骨痂形成,骨折线模糊。术后12周,各组X线结果无差异,骨折部位接近正常骨组织。结论:bFGF/BMP/胶原膜能加速骨折愈合,提高骨折愈合效果。  相似文献   

6.
目的:了解胶原膜作为生长因子缓释材料治疗颌骨骨折的应用前景。方法:将100μg的rhBMP-2用1ml的bFGF溶液完全溶解;用移液器移出40μl的该溶液,滴加到面积为0.5cm×1cm的胶原膜组织块中,冻干后制成生长因子缓释系统;在12只新西兰大白兔两侧制成人工下颌骨骨折模型,左侧置放bFGF/BMP/胶原膜;右侧均为空白对照;术后2、4、12周行临床大体观察及X线片观察。结果:实验组骨折愈合速度明显快于对照组。术后2周,X线结果显示bFGF/BMP/胶原膜组骨折断端边缘模糊。对照组骨折线明显。术后4周,X线结果显示bFGF/BMP/胶原膜骨折线基本不可见,骨折对位良好,断端边缘基本消失,骨折无错位。对照组骨折下缘可见纤维性骨痂形成,骨折线模糊。术后12周,各组X线结果无差异,骨折部位接近正常骨组织。结论:bFGF/BMP/胶原膜能加速骨折愈合,提高骨折愈合效果。  相似文献   

7.
王欣宇  包海鹰  图力古尔  李玉 《菌物学报》2016,35(11):1387-1398
本文通过建立大鼠桡骨骨折生理性模型,探讨了紫芝子实体不同极性提取物促进骨折愈合的作用。首先制备紫芝的石油醚、乙酸乙酯、乙醇、水等提取物,对选取的144只雌雄各半大鼠制作桡骨骨折模型,之后随机分为8组,每组分别给紫芝不同极性的提取物,并于连续灌胃10d、20d、30d用X射线仪和光学显微镜观察各给药组大鼠的骨痂组织生成和大鼠脏器及骨折部位的病理组织学改变情况,检测大鼠血清中钙、磷、碱性磷酸酶含量。结果表明,影像学观察后紫芝不同提取物对大鼠骨折具有不同程度的促进愈合作用,其中,水煎组显示出明显的促进愈合作用,于30d时骨痂已形成,骨性愈合,骨折线消失,骨髓腔复原,骨折已经基本痊愈,水提取物组其次,而其他3组与模型对照组骨折大鼠愈合时间相近。病理组织学观察表明水提取物组和水煎组对大鼠脾、胸腺、肝、肾脏各脏器无任何影响。对骨组织切片染色后观察,灌胃10d后可见造模的7组大鼠骨折边缘均出现大量间充质细胞,而水煎组出现软骨连接;于20d观察两种水提物组骨折边缘间充质细胞退化,少量胶原纤维包绕骨折骨,断骨近端软骨细胞退化,骨小梁相互连接向板层骨转变,而其余各组均形成软骨连接;于30d观察发现7组骨折边缘间充质细胞均出现退化,而水煎组骨折处胶原纤维与正常骨膜无明显差异。对钙含量的检测中,水煎提取物组与模型对照组比较,具有极显著差异(P<0.01);对磷含量的检测中,石油醚、乙酸乙酯、水煎提取物组与模型对照组比较有极显著差异(P<0.01);对碱性磷酸酶含量的检测中,水煎组与阳性对照组、与模型对照组相比均呈上升趋势。结果表明紫芝子实体水煎组具有较好地促进大鼠桡骨骨折的愈合作用。  相似文献   

8.
骨折愈合和修复是一个复杂的过程,包括膜内成骨和软骨内成骨两种方式。绝大多数骨折患者经治疗后可以愈合,但由于术后感染、患者自身成骨能力差等原因,仍有5%~10%的骨不连患者无法愈合进而导致截肢等风险。目前骨不连的治疗包括自体骨移植、使用重组生长因子BMP等策略,但尚无获得批准的治疗药物,因此还需对骨折愈合过程中的生物学机制进行深入研究,寻找其他低风险、高治愈效率的替代疗法。该综述简要介绍了骨损伤后骨折修复和再生的生物学过程,总结了目前临床上用于促进骨折愈合的方法,并对促进骨折愈合的重要分子机制及作用靶点等进行了归纳和总结。  相似文献   

9.
目的:观察糖尿病大鼠的骨折愈合过程,探讨糖尿病影响大鼠骨折愈合的可能的机制,为临床实践提供理论依据。方法:雄性Wister大鼠140只,随机分成二组,每组70只,A组为糖尿病骨折组;B组为非糖尿病骨折组。建立糖尿病动物模型后,无菌条件下在各组大鼠胫骨中点用手术方法制成骨折模型。术后1周、2周、4周、6周、8周各时间点进行X线检查,观察骨折愈合情况。术后1周、2周、3周、4周、6周、8周分别用ELISA法检测血清中IGF-1含量。分别在1、2、4、6、8周各时间点观察5只大鼠骨痂生长情况并取骨折断端组织行HE染色光镜观察。术后4周、6周、8周每组处死10只大鼠留取双侧胫骨标本,冷冻保存后集中进行生物力学检测。结果:1、大体标本观察结果:各时间点A组骨痂生长减缓延迟。2、X线结果:A组骨折愈合质量在各时间点均明显低于B组。3、生物力学测定结果:4周、6周、8周个时间点A组骨折处骨痂的机械强度均明显低于B组。4、组织学染色显示:术后各时间点1、2、4、6、8周A组与B组相比骨折处局部骨痂成熟延迟并且软骨细胞肥大。5、血清IGF-1含量测定:A组大鼠血清中IGF-1含量低于B组,且高峰延迟1周。结论:1.患有糖尿病后大鼠骨折愈合质量差,比较容易出现愈合延迟甚至不愈合;2.患有糖尿病的大鼠骨折后血清中的IGF-1表达明显低于对照组,且高峰推迟1周。  相似文献   

10.
大鼠胫骨近端骨骺损伤后骨桥形成分子机制的研究   总被引:1,自引:0,他引:1  
利用胫骨近端干骺端骨骺损伤的大鼠动物模型,研究骨桥形成的分子病理机制.通过Alcian blue染色观察损伤模型的建立、损伤愈合过程以及骨桥形成情况.采用Tunel试剂盒原位细胞凋亡检测,了解损伤区及周围细胞凋亡情况.利用免疫组织化学及原位杂交实验,观察损伤区周围软骨细胞改变,检测损伤区是否有软骨细胞生成,检测刀Ihh以及Ptch1表达阳性细胞.发现骨骺损伤骨桥形成过程中,完全损伤区中心没有软骨细胞特异的因子Col2al和ColX以及删Ihh和Ptch1的表达,但是完全损伤区和周围正常软骨交界间存在次损伤软骨区,存在软骨细胞凋亡,有Col X的表达,vimentin检测发现,在此区和周围正常软骨间有正常肥大区软骨细胞异常分化而来的成纤维样细胞并形成软骨外膜样结构,次损伤区和软骨外膜结构逐渐被骨桥替代,在此过程中软骨外膜样结构存在Collal、Ptch1和Ihh的表达,提示Ihh可能参与骨桥形成过程.提出骨桥形成过程中损伤中心区域存在膜内化骨,边缘区域存在软骨化骨作用机制.  相似文献   

11.
Heparanase mRNA expression during fracture repair in mice   总被引:1,自引:1,他引:0  
Bone fracture healing takes place through endochondral ossification where cartilaginous callus is replaced by bony callus. Vascular endothelial growth factor (VEGF) is a requisite for endochondral ossification, where blood vessel invasion of cartilaginous callus is crucial. Heparanase is an endoglucuronidase that degrades heparan sulfate proteoglycans (HSPG) and releases heparin-binding growth factors including VEGF as an active form. To investigate the role of heparanase in VEGF recruitment during fracture healing, the expression of heparanase mRNA and VEGF, and vessel formation were examined in mouse fractured bone. On days 5 and 7 after the fracture, when mesenchymal cells proliferated and differentiated into chondrocytes, heparanase mRNA was detected in osteo(chondro)clasts and their precursors, but not in the inflammatory phase (day 3). On day 10, both VEGF and HSPG were produced by hypertrophic chondrocytes of the cartilaginous callus and by osteoblasts of the bony callus; numerous osteo(chondro)clasts resorbing the cartilage expressed strong heparanase signals. Adjacent to the cartilage resorption sites, angiogenesis with CD31-positive endothelial cells and osteogenesis with osteonectin-positive osteoblasts were observed. On days 14 and 21, osteoclasts in the woven bone tissue expressed heparanase mRNA. These data suggest that by producing heparanase osteo(chondro)clasts contribute to the recruitment of the active form of VEGF. Thus osteo(chondro)clasts may promote local angiogenesis as well as callus resorption in endochondral ossification during fracture healing.  相似文献   

12.
13.
14.
Differential expression of fibrillar collagen genes during callus formation   总被引:5,自引:0,他引:5  
An experimental fracture healing model in the rat tibio-fibular bone was employed to study the appearance of messenger RNAs for types I, II and III collagens during endochondral fracture repair. Total RNA was extracted from normal bone and from callus tissue at various time points. The total RNAs were analyzed in Northern hybridization for their contents of procollagen mRNAs using specific cDNA clones. The results show that during the first week of fracture repair type III collagen mRNA is increased to the greatest extent, followed by type II collagen mRNA during the second week. The 28-day callus resembles bone by containing mainly type I collagen mRNAs and very little type II or III collagen mRNA.  相似文献   

15.
Type X collagen synthesis during endochondral ossification in fracture repair   总被引:13,自引:0,他引:13  
Collagen synthesis in normal connective tissue development and repair is integral to tissue stability. The appearance of a short chain collagen, designated Type X, was studied in experimental fractures created in the chicken humerus. Biosynthetic studies using [14C]proline incorporation coupled with histologic examination of the cartilaginous callus demonstrated that Type X collagen synthesis occurs during endochondral ossification in the fracture callus. Type X synthesis occurred in the areas of cartilaginous callus composed of hypertrophic and degenerative chondrocytes that were associated with increased vascularity and matrix mineralization. Synthesis of short chain collagen was not detected in either skeletal muscle or bone. Two-dimensional peptide mapping of cyanogen bromide and proteolytic fragments derived from fracture callus short chain collagen confirmed the identity of this collagen as Type X. The synthesis of Type X collagen by fracture callus is further evidence supporting its close association with the process of endochondral ossification.  相似文献   

16.
The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway is involved in skeletal development, bone repair, and postmenopausal osteoporosis. Inhibitors of prolyl hydroxylases (PHD) enhance vascularity, increase callus formation in a stabilized fracture model, and activate the HIF-1α/VEGF pathway. This study examined the effects of estrogen on the HIF-1α/VEGF pathway in osteoblasts and whether PHD inhibitors can protect from bone loss in postmenopausal osteoporosis. Osteoblasts were treated with estrogen, and expressions of HIF-1α and VEGF were measured at mRNA (qPCR) and protein (Western blot) levels. Further, osteoblasts were treated with inhibitors of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, and levels of VEGF mRNA and protein expression were detected. In addition, ovariectomized rats were treated with PHD inhibitors, and bone microarchitecture and bone mechanical strength were assessed using micro-CT and biomechanical analyses (lower ultimate stress, modulus, and stiffness). Blood vessel formation was measured with India Ink Perfusion and immunohistochemistry. Estrogen, in a dose- and time-dependent manner, induced VEGF expression at both mRNA and protein levels and enhanced HIF-1α protein stability. Further, the estrogen-induced VEGF expression in osteoblasts involved the PI3K/Akt pathway. PHD inhibitors increased bone mineral density, bone microarchitecture and bone mechanical strength, and promoted blood vessel formation in ovariectomized rats. In conclusion, estrogen and PHD inhibitors activate the HIF-1α/VEGF pathway in osteoblasts. PHD inhibitors can be utilized to protect bone loss in postmenopausal osteoporosis by improving bone vascularity and angiogenesis in bone marrow.  相似文献   

17.
Yu YY  Lieu S  Hu D  Miclau T  Colnot C 《PloS one》2012,7(2):e31771
Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones.  相似文献   

18.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

19.
We examined immunohistochemically the fracture repair process in rat tibial bone using antibodies to PCNA, BMP2, TGF-beta 1,-2,-3, TGF-beta R1,-R2, bFGF, bFGFR, PDGF, VEGF, and S-100. The peak level of cell proliferation as revealed by PCNA labelling appeared first in primitive mesenchymal cells and inflammatory cells at the fracture edges and neighboring periosteum at 2-days after fracture, followed by the peaks of periosteal primitive fibroblasts and chondroblasts, which appeared at fracture edges at 3- and 4-days after fracture, respectively. BMP2 was weakly positive in primitive mesenchymal cells, osteoblasts and chondroblasts. At 3-days post-fracture, periosteal osteoblasts produced osteoid tissue and callus with marrow spaces lined by osteoblasts and osteoclasts, and all primitive mesenchymal cells and osteoblasts were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. They were also positive for vascular growth factors bFGF, FGFR and PDGF, but negative for VEGF, and the peak of PCNA labelling of vascular endothelial cells in the marrow space was delayed to 4-days after fracture. Chondroblasts at fracture edges produced hypertrophic chondrocytes at 5-days after fracture and they were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. Primitive chondroblasts were positive for vascular growth factors VEGF as well as bFGF, FGFR, and the peak of PCNA labelling of vascular endothelial cells in the cartilage was at 5-days after fracture. Hypertrophic chondrocytes were also positive for these growth factors but negative for bFGF and bFGFR. S-100 protein-induced calcification was only positive on chondroblasts and hypertrophic chondrocytes. At 7-days after fracture, bone began to be formed from the cartilage at fracture edges, by a process similar to bone formation in the growth plate. Enchondral ossification established a bridge between both fracture edges and periosteal membranous ossification encompassed the fracture site like a sheath at 14 day after fracture. Our study of fracture repair of bone indicates that this process is complex and occurs through various steps involving various growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号