首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
Quantum dot (QD) nanohybrids provide an effective route to explore the new properties of materials and are increasingly used as highly valuable sensitive (bio) chemical probes. Interestingly, the room-temperature phosphorescence (RTP) of 3-mercaptopropionic acid (MPA)-capped Mn-doped ZnS QDs could be remarkably enhanced by the addition of protamine. Based on the above finding, a simple, sensitive, and selective method for rapid detection of protamine was successfully designed. With this method, protamine as a cationic peptide interacts electrostatically with MPA-capped Mn-doped ZnS QDs to form MPA-capped Mn-doped ZnS QD/protamine complexes, which leads to the aggregation of QDs and enhances the RTP intensity. Under the optimized conditions, the RTP intensity change was linearly proportional to the concentration of protamine in the range 0.2–3.0 μg ml−1, and the limit of detection was 0.14 μg ml−1. The proposed method was successfully applied to detect protamine in protamine sulfate injection and human serum samples with satisfactory results, and the recovery ranged from 96.5 to 105.6%.  相似文献   

2.
A “turn off–on” switch mode was established by using the interaction between acridine orange (AO) and DNA as an input signal and using the room temperature phosphorescence (RTP) reversible change of 3-mercaptopropionic acid (MPA)-capped Mn-doped ZnS quantum dots (QDs) as an output signal in biological fluids. AO was absorbed into the surface of Mn-doped ZnS QDs via electrostatic attraction and, thus, formed a ground-state complex through photoinduced electron transfer (PIET). This complex quenched the phosphorescence of Mn-doped ZnS QDs and then rendered the system into the “turn-off” mode. Along with the addition of DNA and embedded binding with DNA, AO was competitively induced to fall off from the surface of Mn-doped ZnS QDs and embed into the double helix structure of DNA. As a result, the RTP of Mn-doped ZnS QDs was recovered and the system consequently was rendered into “turn-on” mode. In this case, a new biosensor for DNA detection was built and has a detection limit of 0.033 mg L−1 and a detection range from 0.033 to 20 mg L−1. What is more, this kind of biosensor does not require complex pretreatments and is free from the interference from autofluorescence and scattering light. Thus, this biosensor can be used to detect DNA in biological fluids.  相似文献   

3.
N‐acetyl‐l ‐cysteine‐capped Mn‐doped ZnS quantum dots (QDs) were prepared by hydrothermal methods. It could emit phosphorescence at 583 nm with the excitation wavelength at 315 nm. The phosphorescence intensity of QDs could be quenched dramatically by increasing the concentration of Co2+ ion. The novel phosphorescence sensor based on N‐acetyl‐l ‐cysteine‐capped QDs was developed for detecting Co2+ ion with a linear dynamic range of 1.25 × 10–6–3.25 × 10–5 m . The limit of detection and RSD were 6.0 × 10–8 m and 2.3%, respectively. Interference experiments showed excellent selectivity over numerous cations such as alkali, alkaline earth and transitional metal ions. The possible quenching mechanism was also examined by phosphorescence decays. The proposed phosphorescence method was further applied to the trace determination of Co2+ ion in tap and pond water samples with recoveries of 97.75–103.32%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Dudu Wu  Zhi Chen 《Luminescence》2014,29(4):307-313
Water‐soluble ZnS quantum dots (QDs) modified by mercaptoacetic acid (MPA) were used to determinate quercetin in aqueous solutions by a fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnS QDs could be quenched by quercetin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25°C. Under the optimal conditions, the detection limit of quercetin was 5.71 × 10‐7 mol/L. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by the quenching rate constant Kq (1.14 × 1013 L/mol/s). Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Atrazine is a common agricultural pesticide which has been reported to occur widely in surface drinking water, making it an environmental pollutant of concern. In the quest for developing sensitive detection methods for pesticides, the use of quantum dots (QDs) as sensitive fluorescence probes has gained momentum in recent years. QDs have attractive and unique optical properties whilst coupling of QDs to molecularly imprinted polymers (MIPs) has been shown to offer excellent selectivity. Thus, the development of QD@MIPs based fluorescence sensors could provide an alternative for monitoring herbicides like atrazine in water. In this work, highly fluorescent CdSeTe/ZnS QDs were fabricated using the conventional organometallic synthesis approach and were then encapsulated with MIPs. The CdSeTe/ZnS@MIP sensor was characterized and applied for selective detection of atrazine. The sensor showed a fast response time (5 min) upon interaction with atrazine and the fluorescence intensity was linearly quenched within the 2–20 mol L?1 atrazine range. The detection limit of 0.80 × 10?7 mol L?1 is comparable to reported environmental levels. Lastly, the sensor was applied in real water samples and showed satisfactory recoveries (92–118%) in spiked samples, hence it is a promising candidate for use in water monitoring.  相似文献   

6.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

7.
Core‐shell CdTe/ZnS quantum dots capped with 3‐mercaptopropionic acid (MPA) were successfully synthesized in aqueous medium by hydrothermal synthesis. These quantum dots have advantages compared to traditional quantum dots with limited biological applications, high toxicity and tendency to aggregate. The concentration of Cu2+ has a significant impact on the fluorescence intensity of quantum dots (QDs), therefore, a rapid sensitive and selective fluorescence probe has been proposed for the detection of Cu2+ in aqueous solution. Under optimal conditions, the fluorescence intensity of CdTe/ZnS QDs was linearly proportional to the concentration of Cu2+ in the range from 2.5 × 10–9 M to 17.5 × 10–7 M with the limit of 1.5 × 10–9 M and relative standard deviation of 0.23%. The quenching mechanism is static quenching with recoveries of 97.30–102.75%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The ubiquitous hexahistidine purification tag has been used to conjugate proteins to the shell of CdSe:ZnS quantum dots (QDs) due to its affinity for surface-exposed Zn2+ ions but little attention has been paid to the potential of His-tagged proteins for mineralizing luminescent ZnS nanocrystals. Here, we compare the ability of free histidine, a His tag peptide, His-tagged thioredoxin (TrxA, a monomeric protein), and N- and C-terminally His-tagged versions of Hsp31 (a homodimeric protein) to support the synthesis of Mn-doped ZnS nanocrystals from aqueous precursors under mild conditions of pH (8.2) and temperature (37 °C). We find that: (1) it is possible to produce poor quality QDs when histidine is used at high (8 mM) concentration; (2) an increase in local histidine concentration through repetition of the amino acid as a His tag decreases the amount of needed reagent ≈10-fold and improves optical properties; (3) fusion of the same His tag to TrxA allows for ZnS:Mn QDs mineralization at micromolar concentrations; and (4) doubling the local hexahistidine concentration by exploiting Hsp31 dimerization further improves nanocrystal luminescence with the brightest particles obtained when His tags are spatially co-localized at the Hsp31 N-termini. Although hexahistidine tracts are not as efficient as combinatorially selected ZnS binding peptides at QD synthesis, it should be possible to use the large number of available His-tagged proteins and the synthesis approach described herein to produce luminescent nanoparticles whose protein shell carries a broad range of functions.  相似文献   

9.
The aim of this study was to investigate the cellular toxicity of copper-induced injury to the black tiger shrimp Penaeus monodon. The 24 h, 48 h, 72 h and 96 h LC50 (median lethal concentration) of Cu2+ on P. monodon (11.63 ± 1.14 g) were found to be 3.49, 1.54, 0.73 and 0.40 mg L− 1, respectively. Total haemocyte count (THC), phagocytic activity, respiratory burst (RB), cytoplasmic free-Ca2+ (cf-Ca2+) concentration and apoptotic cell ratio of shrimp were determined after exposure to different concentrations of Cu2+ (0, 0.05, 0.5, 1.5 and 3.5 mg L− 1) for 0, 6, 12, 24 and 48 h. There was no significant effect on the analytic indicator of shrimp exposed to 0.05 mg L− 1 Cu2+. THC decreased after Cu-exposure to 0.5 mg L− 1 for 48 h, 1.5 mg L− 1 for 24 h and 3.5 mg L− 1 for 12 h. Phagocytic activity decreased in P. monodon following 48 h exposure to 3.5 mg L− 1 Cu2+. RB was induced after 6 h exposure to 0.5, 1.5 and 3.5 mg L− 1 Cu2+. cf-Ca2+ concentration increased after 48 h exposure to 0.5 mg L− 1 Cu2+, and 12 h exposure to 1.5 and 3.5 mg L− 1 Cu2+. The percentage of apoptotic cells increased to 9.5%, 16.3% and 18.6% respectively following 48 h exposure to 0.5, 1.5 and 3.5 mg L− 1 Cu2+. These results indicate that Cu can induce oxidative stress, elevation of cf-Ca2+ and cell apoptosis, and inhibit phagocytic activity in the shrimp P. monodon, and the lethal injury of Cu2+ to P. monodon may be mainly due to the sharp reduction of THC caused by ROS-induced apoptosis.  相似文献   

10.
Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure were investigated in the study. Results showed that iron accumulation in E. nuttallii was concentration dependent. Growth of E. nuttallii was promoted by low iron concentration (1–10 mg L?1 [Fe3+]), but growth inhibition was observed when iron concentration beyond 10 mg L?1. The synthesis of protein and pigments increased within 1–10 mg L?1 [Fe3+] range. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-S-transferase (GST) were up to maximal values at 10 mg L?1 [Fe3+]. High iron concentration inhibited the synthesis of protein and pigments as well as activities of antioxidative enzymes, and accelerated degradation of pigment and production of ROS. Low iron concentration had no significant influences on PSII maximal quantum yield, activity of PSII and relative electron transport rate though PSII. Malondialdehyde (MDA) and proline concentrations were highest at 100 and 1 mg L?1 [Fe3+], respectively.  相似文献   

11.
水杉愈伤组织诱导及植株再生   总被引:2,自引:0,他引:2  
通过愈伤组织诱导器官发生途径, 建立了水杉(Metasequoia glyptostroboides)的植株再生体系, 探讨了不同外植体 (种胚、幼叶切块、茎段、根段)和植物生长调节剂对不定芽直接再生和愈伤组织诱导器官发生的影响。结果表明: 以种胚、无菌苗叶片、茎段和根作为外植体, 在MS补加2,4-D、NAA和6-BA不同组合的培养基上都能诱导得到愈伤组织, 其中种胚诱导愈伤组织效果最好, 诱导率可达100%, 茎诱导效果次之, 诱导率为97.1%。诱导愈伤组织效果较好的培养基有:MS+1.0 mg·L–1 2,4-D + 0.5 mg·L–1 6-BA、MS + 0.1 mg·L–1 6-BA + 1.0 mg·L–1 NAA、MS + 0.5 mg·L–1 6-BA+1.0 mg·L–1 NAA、MS+1.0 mg·L–1 6-BA+1.0 mg·L–1 NAA、MS+0.5 mg·L–1 6-BA+2.0 mg·L–1 NAA、MS+1.0 mg·L–1 6-BA + 2.0 mg·L–1 NAA和MS + 0.5 mg·L–1 2,4-D + 0.5 mg·L–1 NAA。以愈伤组织在MS培养基上植株再生效果最好, 再生率为62.5%。  相似文献   

12.
Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m−3 d−1 and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L−1 (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m−3 d−1 and HRT of 15.6 days produced effluent with nitrate concentration of ∼0.025 mg N L−1 (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.  相似文献   

13.
Water dispersible zinc sulfide quantum dots (ZnS QDs) with an average diameter of 2.9 nm were synthesized in an environment friendly method using chitosan as stabilizing agent. These nanocrystals displayed characteristic absorption and emission spectra having an absorbance edge at 300 nm and emission maxima (λ emission) at 427 nm. Citrate-capped silver nanoparticles (Ag NPs) of ca. 37-nm diameter were prepared by modified Turkevich process. The fluorescence of ZnS QDs was significantly quenched in presence of Ag NPs in a concentration-dependent manner with K sv value of 9 × 109 M−1. The quenching mechanism was analyzed using Stern–Volmer plot which indicated mixed nature of quenching. Static mechanism was evident from the formation of electrostatic complex between positively charged ZnS QDs and negatively charged Ag NPs as confirmed by absorbance study. Due to excellent overlap between ZnS QDs emission and surface plasmon resonance band of Ag NPs, the role of energy transfer process as an additional quenching mechanism was investigated by time-resolved fluorescence measurements. Time-correlated single-photon counting study demonstrated decrease in average lifetime of ZnS QDs fluorescence in presence of Ag NPs. The corresponding F?rster distance for the present QD–NP pair was calculated to be 18.4 nm.  相似文献   

14.
Liu JM  Wang HX  Lin LP  Lin SQ  Lin X  Cai WL  Lin CQ  Li ZM 《Luminescence》2012,27(5):346-351
3.5‐Generation polyamidoamine dendrimers (3.5‐G‐D) emitted strong and stable room‐temperature phosphorescence (RTP) on filter paper when Pb2+ was used as a heavy atom perturber. The RTP signal of 3.5‐G‐D was sharply enhanced upon the formation of 3.5‐G‐D–Tween‐80 micelle compound. The complex Cd2+–3.5‐G‐D–Tween‐80, generated in the coordination reaction between Cd2+ and the tertiary amidocyanogen on the outer layer of 3.5‐G‐D in 3.5‐G‐D–Tween‐80 micelle compound, could catalyze KBrO3 to oxidize 3.5‐G‐D in 3.5‐G‐D–Tween‐80, which caused the sharp quenching of the RTP signal of the system. The phosphorescence intensity change (ΔIp) of the system had a linear relationship with the content of Cd2+. Thus a new catalytic solid substrate–room‐temperature phosphorimetry (SS‐RTP) for the determination of trace cadmium has been established. This highly selective and sensitive method has been applied to determine trace cadmium in biological samples with a limit of detection (LD) of 1.2 ag per spot (when the sample volume was 0.4 μL per spot, the corresponding concentration was 3.0 × 10?15 g mL?1), the results agreeing with those obtained by atomic absorption spectrometry. The mechanism of catalytic SS‐RTP for the determination of trace cadmium was also discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this environmental-sample based study, rapid microbial-mediated degradation of 2,4,6-trinitrotoluene (TNT) contaminated soils is demonstrated by a novel strain, Achromobacter spanius STE 11. Complete removal of 100 mg L−1 TNT is achieved within only 20 h under aerobic conditions by the isolate. In this bio-conversion process, TNT is transformed to 2,4-dinitrotoluene (7 mg L−1), 2,6-dinitrotoluene (3 mg L−1), 4-aminodinitrotoluene (49 mg L−1) and 2-aminodinitrotoluene (16 mg L−1) as the key metabolites. A. spanius STE 11 has the ability to denitrate TNT in aerobic conditions as suggested by the dinitrotoluene and NO3 productions during the growth period. Elemental analysis results indicate that 24.77 mg L−1 nitrogen from TNT was accumulated in the cell biomass, showing that STE 11 can use TNT as its sole nitrogen source. TNT degradation was observed between pH 4.0–8.0 and 4–43 °C; however, the most efficient degradation was at pH 6.0–7.0 and 30 °C.  相似文献   

16.
Low aqueous phase solubility is the major limiting factor in successful biodegradation of pyrene and other polycyclic aromatic hydrocarbons (PAH), which can, however, be overcome by using a suitable surfactant. Biodegradation of pyrene by immobilized cells of Mycobacterium frederiksbergense in presence of non-ionic surfactant Tween 80 was evaluated. For cell immobilization, beads were prepared using calcium alginate as the immobilizing material based on immobilized cell viability and mechanical stability of the beads. Complete degradation of pyrene was achieved employing the immobilized cells in batch shake flask experiments for all four different initial concentrations of the PAH at 100 mg l−1, 200 mg l−1, 400 mg l−1 and 1000 mg l−1. The experimental results of biodegradation of pyrene at very high initial concentration of 1000 mg l−1 using the cell immobilized beads was further investigated in a 3 l fermentor operated at controlled conditions of 150 rpm, 28 °C, pH 7 and 1.5 l min−1 aeration. The results confirmed complete degradation of the PAH with a very higher degradation rate of 250 mg l−1 d−1, which is so far the highest value reported for pyrene biodegradation.  相似文献   

17.
High‐quality CdxZn1 – xSe and CdxZn1 – xSe/ZnS core/shell quantum dots (QDs) emitting in the violet–green spectral range have been successfully prepared using hydrothermal methods. The obtained aqueous CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs exhibit a tunable photoluminescence (PL) emission (from 433.5 nm to 501.2 nm) and a favorable narrow photoluminescence bandwidth [full width at half maximum (FWHM): 30–42 nm]. After coating with a ZnS shell, the quantum yield increases from 40.2% to 48.1%. These CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs were characterized by transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy and Fourier transform infrared (FTIR) spectroscopy. To further understand the alloying mechanism, the growth kinetics of CdxZn1 – xSe were investigated through measuring the fluorescence spectra and X‐ray diffraction spectra at different growth intervals. The results demonstrate that the inverted ZnSe/CdSe core/shell structure is formed initially after the injection of Cd2+. With further heating, the core/shell structured ZnSe/CdSe is transformed into alloyed CdxZn1 – xSe QDs with the diffusion of Cd2+ into ZnSe matrices. With increasing the reaction temperature from 100 °C to 180 °C, the duration time of the alloying process decreases from 210 min to 20 min. In addition, the cytotoxicity of CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs were investigated. The results indicate that the as‐prepared CdxZn1 – xSe/ZnS QDs have low cytotoxicity, which makes them a promising probe for cell imaging. Finally, the as‐prepared CdxZn1 – xSe/ZnS QDs were utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (1.8 nM).  相似文献   

18.
Water‐soluble ZnS:Mn quantum dots (QDs) were synthesized using a hydrothermal method with 3‐mercaptopropionic acid as stabilizer. The optical properties of ZnS:Mn QDs were thoroughly investigated by tuning the doping concentration of Mn2+ and the Zn/S precursor ratio, to obtain an optimal parameter for QDs with excellent fluorescence characteristics. ZnS:Mn QDs excited at only one wavelength, however, which seriously limited their further application. Here, a trace Cd ion was doped into a ZnS host, resulting in QD excitation covering a wide adjustable waveband. Furthermore, when a ZnS shell was coated onto the surface of the ZnCdS:Mn QDs, photoluminescence intensity and stability were further enhanced. After coupling with an anti‐CK 19 antibody, the ZnCdS:Mn/ZnS core/shell QDs were able to function by labeling cancer cells, indicating that they could be considered as a suitable bio‐probe for cells and tissue imaging.  相似文献   

19.
Lactoalbumin hydrolysate (LH) at 100 mg L−1 with methyl jasmonate (MJ) at 2 mg L−1 synergistically stimulated ginsenoside accumulation in Panax quinquefolium cells compared with 100 mg L−1 LH. Combination elicitors led to higher ginsenoside productivity (45.93 mg L−1) than single treatment of 100 mg L−1 LH (31.37 mg L−1). This present result will be helpful in providing a tool for enhancing the productivity of ginsenoside by Panax quinquefolium cell cultures on a commercial scale.  相似文献   

20.
Two arsenic (As) hyperaccumulators (Pteris multifida and Pteris vittata) and a non-hyperaccumulator (Pteris semipinnata) were exposed to different As concentrations under hydroponic conditions. Five flavonoids in these fern species were determined by high-performance liquid chromatography (HPLC). Flavonoid production in P. multifida and P. semipinnata was also studied in 0 and 20 mg As L−1 treatments at different cultivation times. No significant differences were observed regarding the contents of quercetin, isoquercitrin and kaempferol in the fronds. The contents of rutin, quercetin, kaempferol and total flavonoids were also not significantly different in the roots of the three fern species under the same As treatment. However, significant differences were observed in contents of rutin, quercetin, hyperin, kaempferol and total flavonoids over time in the 20 mg As L−1 treatment. In general, the changes in flavonoid contents in the As hyperaccumulators were not directly related to As accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号