首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The 3.5‐generation dendrimers (3.5G‐D)–porphyrin (P) dual luminescent molecule (3.5G‐D–P) was used to label concanavalin agglutinin (Con A); the product of the reaction is 3.5G‐D–P–Con A. A new method for the determination of trace AFP‐V by affinity adsorption solid substrate–room temperature phosphorimetry (AA‐SS–RTP) was established, based on the room temperature phosphorescence (RTP) property of the product on polyamide membrane (PAM) substrate and the specific affinity adsorption (AA) reaction between 3.5G‐D–P–Con A and α‐fetoprotein variant (AFP‐V), which caused the RTP of the system to be sharply enhanced, the ΔIp was linearly correlated to the content of AFP‐V. The sensitivity of the method was obviously high. It could accurately detect the content of AFP‐V in serum. The results were tallied well with those obtained by the ELISA method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Batch experiments were conducted to investigate the adsorption behavior of Tween 80 in the systems composed of Tween 80, CdCl2, and/or DDT. The results show that Cd2+ from CdCl2 is the functional fraction influencing the adsorption of Tween 80 to soil, rather than Cl?. Moreover, DDT can induce the increase of the critical micelle concentration (CMC) of Tween 80, which further impacts the Tween 80 adsorption behavior. The Tween 80 adsorption to soil in the Cd2+-DDT coexisted system follows the Langmuir isotherm, as in the Tween 80-Cd2+ or -DDT systems. Cd2+ and/or DDT decrease(s) the adsorption capacity of Tween 80 to soil, and the magnitude of decrease is dependent on the concentration of coexisting pollutants. Although DDT has a stronger inhibitory effect on Tween 80 adsorption than Cd2+ under the same DDT/Cd2+ concentrations, the coexistence of Cd2+ and DDT has an antagonistic effect on the adsorption of Tween 80. This effect is impacted by the concentrations of the coexisting pollutants, and is a result of the complex interaction among the three pollutants.  相似文献   

3.
This work proposes a simple and sensitive solid substrate–room temperature phosphorimetry (SS–RTP) for the selective determination of carvedilol (CV). The method is based on the sensitizing effect of sodium dodecyl benzene sulphonate (SDBS) on CV to activate the oxidation between NaClO and amaranth, resulting in the intense quenching of room temperature phosphorescence (RTP) of the system. Compared with non‐SDBS system, the reduction of phosphorescence intensity (ΔIp) with SDBS is 16.5 times higher and is directly proportional to the content of CV, covering a wide range 0.080–16.00 fg/spot. The regression equation of the working curve can be expressed as ΔIp = 0.7780 + 7.057 mCV (fg/spot) (correlation coefficient (r) = 0.9976, n = 8), with a detection limit (LD) of 0.020 fg/spot (corresponding concentration is 5.1 × 10−14 g/mL, sample volume is 0.40 μL/spot). This sensitive method has also been applied to determine trace CV in human plasma and the results agreed with synchronous fluorimetry (SF). The activation energy (E) and rate constant (k) of this activating reaction were 69.04 kJ/mol and 3.580 × 10−4 s−1, respectively. The reaction mechanism is also discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Procaterol hydrochloride (Prh) can inhibit KClO3 oxidation of fluorescein isothiocyanate (FITC) to form a non‐phosphorescent compound, which causes room temperature phosphorescence (RTP) of FITC in the system to enhance sharply the linear relationship between ?Ip and the Prh content. Thus, a rapid response and highly sensitive phosphorescence sensor for the determination of Prh has been developed based on the inhibiting effect of Prh on KClO3 oxidation of FITC. This simple, high sensitivity (detection limit (LD) calculated by 3Sb/k was 0.019 fg/spot, sample volume 0.40 µl, corresponding concentration 4.8 × 10–14 g ml–1) and selective sensor with a wide linear range (0.080–11.20 g/spot) has been applied to detect Prh in blood samples, and the results were consistent with those obtained by high‐performance liquid chromatography (HPLC). Simultaneously, the mechanism of the phosphorescence sensor for the detection of Prh was also investigated using infrared spectroscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The toxic metal ion cadmium (Cd2+) induces pleiotropic effects on cell death and survival, in part through effects on cell signaling mechanisms and cytoskeletal dynamics. Linking these phenomena appears to be calmodulin‐dependent activation of the Ca2+/calmodulin‐dependent protein kinase II (CaMK‐II). Here we show that interference with the dynamics of the filamentous actin cytoskeleton, either by stabilization or destabilization, results in disruption of focal adhesions at the ends of organized actin structures, and in particular the loss of vinculin and focal adhesion kinase (FAK) from the contacts is a result. Low‐level exposure of renal mesangial cells to CdCl2 disrupts the actin cytoskeleton and recapitulates the effects of manipulation of cytoskeletal dynamics with biological agents. Specifically, Cd2+ treatment causes loss of vinculin and FAK from focal contacts, concomitant with cytoskeletal disruption, and preservation of cytoskeletal integrity with either a calmodulin antagonist or a CaMK‐II inhibitor abrogates these effects of Cd2+. Notably, inhibition of CaMK‐II decreases the migration of FAK‐phosphoTyr925 to a membrane‐associated compartment where it is otherwise sequestered from focal adhesions in a Cd2+‐dependent manner. These results add further insight into the mechanism of the CaMK‐II‐dependent effects of Cd2+ on cellular function. J. Cell. Biochem. 114: 1832–1842, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Glutathione S‐transferases (GSTs) are a family of detoxifying enzymes that catalyze the conjugation of glutathione (GSH) to electrophiles, thereby increasing the solubility of xenobiotics and aiding its excretion from the cell. The present work presents the inhibition of a mu‐class GST of the marine shrimp Litopenaeus vannamei by copper (Cu2+) and cadmium (Cd2+). The protein was overexpressed in bacteria and its enzymatic activity measured using 1‐chloro‐2,4‐dinitrobenzene. The mean inhibitory concentration (IC50) for shrimp GST against Cu2+ was 4.77 μM and for Cd2+ was 0.39 μM. A molecular model of the protein based on the crystal structure of a maize GST bound to cadmium showed that the metal binds in the GSH‐binding site by coordination with Asp and Gln residues. These results are consistent with the experimental data and suggest that sublethal concentration of metals may affect the capacity of the organism to detoxify pesticides or xenobiotics. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:218–222, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20326  相似文献   

7.
The rhodamine 6G+‐perphenazine (Rhod 6G+–PPH) compound is formed in the ester‐exchange reaction between ‐OH of PPH and ‐COOC2H5 of Rhod 6G+. PPH was oxidized to a red compound (PPH') in the presence of K2S2O8. Interestingly, the room temperature phosphorescence (RTP) of Rhod 6G+ was quenched because the ‐OH of PPH′ reacted with ‐COOC2H5 of Rhod 6G+–PPH to form Rhod 6G+–PPH’ and PPH, which decreased the π‐electron density (δ) of the carbon atom in the Rhod 6G+–PPH’ conjugated system and enhanced the nonradiation energy loss of the excited Rhod 6G+ of the triplet state. The PPH content was directly proportional to the ΔIp of the system. Thus, a new catalytic solid‐substrate room temperature phosphorimetry (SSRTP) method was established for the determination of PPH. The method had high sensitivity (the limit of detection was 0.019 fg/spot, corresponding to a concentration of 4.8 × 10–14 g/mL; the sampling quantity was 0.40 μL/spot), good selectivity, convenience and speed. The analytical results were in accordance with those of high‐performance liquid chromatography (HPLC). The structures of Rhod 6G+, PPH and Rhod 6G+–PPH were characterized by infrared spectra. The reaction mechanism by which PPH was determined is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Glucose‐6‐phosphate dehydrogenase (G6PD) is the first enzyme on which the pentose phosphate pathway was checked. In this study, purification of a G6PD enzyme was carried out by using rat erythrocytes with a specific activity of 13.7 EU/mg and a yield of 67.7 and 155.6‐fold by using 2′,5′‐ADP Sepharose‐4B affinity column chromatography. For the purpose of identifying the purity of enzyme and molecular mass of the subunit, a sodium dodecyl sulfate‐polyacrylamide gel electrophoresis was carried out. The molecular mass of subunit was calculated 56.5 kDa approximately. Then, an investigation was carried out regarding the inhibitory effects caused by various metal ions (Fe2+, Pb2+, Cd2+, Ag+, and Zn2+) on G6PD enzyme activities, as per Beutler method at 340 nm under in vitro conditions. Lineweaver–Burk diagrams were used for estimation of the IC50 and Ki values for the metals. Ki values for Pb+2, Cd+2, Ag+, and Zn+2 were 113.3, 215.2, 19.4, and 474.7 μM, respectively.  相似文献   

9.
10.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

11.
The present paper describes the development and validation of a simple and sensitive micelle‐enhanced high‐throughput fluorometric method for the determination of niclosamide (NIC) in 96‐microwell plates. The proposed method is based on the reduction of the nitro group of niclosamide to an amino group using Zn/HCl to give a highly fluorescent derivative that was developed simultaneously and measured at λem 444 nm after excitation at λex 275 nm. Tween‐80 and carboxymethylcellulose (CMC) have been used as fluorescence enhancers and greatly enhanced the fluorescence by factors of 100–150%. The different experimental conditions affecting the fluorescence reaction were carefully investigated and optimized. The proposed method showed good linearity (r2≥ 0.9997) over the concentration ranges of 1–5 and 0.5–5 μg/ml with lower detection limits of 0.01 and 0.008 μg/ml and lower quantification limits of 0.04 and 0.03 μg/ml on using Tween‐80 and or CMC, respectively. The developed high‐throughput method was successfully applied for the determination of niclosamide in both tablets and spiked plasma. The capability of the method for measuring microvolume samples made it convenient for handling a very large number of samples simultaneously. In addition, it is considered an environmentally friendly method with lower consumption of chemicals and solvents.  相似文献   

12.
We have studied Cd2+-induced effects on mitochondrial respiration and swelling in various media as a function of the [Cd2+] in the presence or absence of different bivalent metal ions or ruthenium red (RR). It was confirmed by monitoring oxygen consumption by isolated rat liver mitochondria that, beginning from 5 M, Cd2+ decreased both ADP and uncoupler-stimulated respiration and increased their basal respiration when succinate was used as respiratory substrate. At concentrations higher than 5 M, Cd2+ stimulated ion permeability of the inner mitochondrial membrane, which was monitored in this study by swelling of both nonenergized mitochondria in 125 mM KNO3 or NH4NO3 medium and succinate-energized mitochondria incubated in a medium containing 25 mM K-acetate and 100 mM sucrose. We have found substantial changes in the above-mentioned Cd2+ effects on mitochondria treated in sequence with 100 M of Ca2+, Sr2+, Mn2+ or Ba2+(Me2+) and 7.5 M RR, as well as the alterations in Cd2+ action on the uptake of 137Cs+ by succinate-energized mitochondria in the presence or absence of valinomycin in acetate medium (50 mM Tris-acetate and 140 mM sucrose) with or without Ca2+ or RR. The evidence obtained indicate that Ca2+ exhibits a synergestic action on all Cd2+ effects examined, whereas Sr2+ and Mn2+, conversely, are antagonistic. In the presence of RR, the Cd2+ effects on respiration [stimulation of State 4 respiration and inhibition of 2,4-dinitrophenol (DNP)-uncoupled respiration] still exist, but are observed at concentrations of cadmium more than one order higher; the inhibition of State 3 respiration by Cd2+, conversely, takes place under even lower cadmium concentrations than those determined without RR in the medium. In addition, RR added simultaneously with cadmium in the incubation medium prevents any swelling in the nitrate media, but induces an increment both in Cd2+-stimulated swelling and 137Cs+ (analog of K+) uptake in the acetate media. For the first time, we have shown that Cd2+-induced swelling in all media under study is susceptible to cyclosporin A (CSA), a high-potency inhibitor of the mitochondrial permeability transition (PT) pore. The observations are interpreted in terms of a dual effect of cadmium on respiratory chain activity and permeability transition.  相似文献   

13.
N‐acetyl‐l ‐cysteine‐capped Mn‐doped ZnS quantum dots (QDs) were prepared by hydrothermal methods. It could emit phosphorescence at 583 nm with the excitation wavelength at 315 nm. The phosphorescence intensity of QDs could be quenched dramatically by increasing the concentration of Co2+ ion. The novel phosphorescence sensor based on N‐acetyl‐l ‐cysteine‐capped QDs was developed for detecting Co2+ ion with a linear dynamic range of 1.25 × 10–6–3.25 × 10–5 m . The limit of detection and RSD were 6.0 × 10–8 m and 2.3%, respectively. Interference experiments showed excellent selectivity over numerous cations such as alkali, alkaline earth and transitional metal ions. The possible quenching mechanism was also examined by phosphorescence decays. The proposed phosphorescence method was further applied to the trace determination of Co2+ ion in tap and pond water samples with recoveries of 97.75–103.32%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Despite intense research, the mechanism of Cd2+ toxicity on photosynthesis is still elusive because of the multiplicity of the inhibitory effects and different barriers in plants. The quick Cd2+ uptake in Synechocystis PCC 6803 permits the direct interaction of cadmium with the photosynthetic machinery and allows the distinction between primary and secondary effects. We show that the CO2‐dependent electron transport is rapidly inhibited upon exposing the cells to 40 µm Cd2+ (50% inhibition in ~15 min). However, during this time we observe only symptoms of photosystem I acceptor side limitation and a build of an excitation pressure on the reaction centres, as indicated by light‐induced P700 redox transients, O2 polarography and changes in chlorophyll a fluorescence parameters. Inhibitory effects on photosystem II electron transport and the degradation of the reaction centre protein D1 can only be observed after several hours, and only in the light, as revealed by chlorophyll a fluorescence transients, thermoluminescence and immunoblotting. Despite the marked differences in the manifestations of these short‐ and long‐term effects, they exhibit virtually the same Cd2+ concentration dependence. These data strongly suggest a cascade mechanism of the toxic effect, with a primary effect in the dark reactions.  相似文献   

15.
16.
Ion‐induced change in fluorescence is a straight‐forward method for detection of toxic metal ions showing immediate response. Cadmium ions are toxic to the environment. We report in this paper a piperidine‐4‐one‐based fluorescent chemosensor of Cd2+ ions, designed and synthesized by a simple method. The compound is characterized using infra‐red (IR) and 1H–NMR spectral techniques. The chemosensor showed Cd2+ ion selectivity and sensitivity in aqueous solution. The stoichiometry and the binding constants were determined using fluorescence spectroscopy. Piperidine‐4‐one shows a 1:1 stoichiometric binding to Cd2+. The limit of detection of Cd2+ was reported.  相似文献   

17.
The effect of multivalent cations on [125I]-IGF binding to cell-associated IGFBPs was investigated using human fibroblasts. The major cell-associated binding site for [125I]-IGF-I is IGFBP-3 and for [125I]-IGF-II are IGFBP-3 and IGFBP-5. Lanthanum and chromium did not affect either [125I]-IGF-I or [125I]-IGF-II binding to cell-associated IGFBPs. By contrast, zinc (Zn2+), gold (Au3+), and cadmium (Cd2+) depressed binding of both ligands. Ligand binding resulted in nonlinear Scatchard plots. Assuming a pre-existent asymmetric model with high- (KaHi) and low- (KaLo) affinity sites, Zn2+ lowered both KaHi and KaLo. Au3+ eliminated KaHi. Assuming that the nonlinear plots were caused by ligand-induced negative cooperativity, Zn2+ and Cd2+ lowered both Ke and Kf (affinity of unoccupied and saturated IGFBPs, respectively). Au3+ eliminated Ke and reduced Kf. Zn2+ was active at serum levels in lowering IGF binding. Zinc, gold, and cadmium bind to similar regions within proteins (a zinc-binding motif) indicating similar mechanisms of action. A zinc-binding motif is present in the IGFBPs, but not in the IGFs. We demonstrate for the first time that the trace nutrient zinc and related multivalent cations decrease IGF binding to fibroblast-associated IGFBPs by lowering the affinity of the IGF–IGFBP interaction. J. Cell. Biochem. 69:364–375, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
A new bluish‐white long‐lasting phosphorescent material, Hf4+‐doped b‐Zn3(PO4)2, was prepared by the conventional high‐temperature solid‐state method. The photoluminescence (PL) spectrum reveals that it exhibits a strong blue emission band centred at 470 nm, with asymmetry on the long wavelength side; this material emits bluish‐white light and shows strong afterglow phosphorescence after it is excited with a 254 nm UV lamp. The phosphorescence lasts nearly 40 min in the light perception of the dark‐adapted human eye (0.32 mcd/m2). The possible phosphorescence mechanism is also analysed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Introduction – Since the mechanism of Cd2+ stress for plants is not clear, an in vivo method to monitor Cd2+ stress for plants is necessary. However, oxidative burst (OB) is a signal messenger in the process of Cd2+ stress for plants. Objective – To establish an electrochemical method with poly‐o‐phenylenediamine and Pt microparticle modified Pt electrode (POPD–Pt‐MP–Pt) as a microbiosensor for the in vivo detection of oxidative burst induced by Cd2+ stress in oilseed rape (Brassica napus L.). Methodology – The optimal fabrication of POPD–Pt‐MP–Pt biosensor was achieved. Electrochemical signal was collected by amperometry. Results – After oilseed rape was exposed to 84.9 mM CdCl2 stress, three oxidative bursts were observed in oilseed rape by amperometry at 3.3 h, 8.4 h and 13.2 h, respectively. However, there was no obvious signal observed in the controlled assay. Conclusion – This contribution presents the in vivo monitoring of the OB process induced by Cd2+ stress in oilseed rape by POPD–Pt‐MP–Pt microbiosensor in real‐time. The novel electrochemical microbiosensor not only facilitates the real‐time study in plant self‐defence response to the adverse environment such as Cd2+ stress, but also provides an effective tool for probing the self‐defence mechanism in plants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A new sensitive quaternary photoluminescence enhancement system has been successfully developed to determine trace amounts of Eu3+ and Zn2+. The photoluminescence intensity of Eu ? N‐(o‐vanilin)‐1,8‐diaminonaphthalene systems was greatly increased by the addition of specific concentrations of 1, 10‐phenanthroline and Zn2+. The excitation and emission wavelengths were 274 and 617 nm, respectively. Under optimal system conditions, the photoluminescence intensity showed a linear response toward Eu3+ in the range of 5.0 × 10–6 ~ 2.0 × 10–5 M with a limit of detection (= 2.2 × 10–9 M) and the photoluminescence intensity of the system decreased linearly by increasing the Zn2+ concentration in the range of 5.0 × 10–8 ~ 1.0 × 10–6 M with a limit of detection (= 8.8 × 10–11 M). This system was successfully applied for the determination of trace amounts of Eu3+ in a high purity La2O3 matrix and in the synthetic rare earth oxide mixture, and of Zn2+ in a high purity Mg(NO3)2 · 6H2O matrix and in synthetic coexisting ionic matrixes. The energy transfer mechanism, photoluminescence enhancement of the system and interference of other lanthanide ions and common coexisting ions were also studied in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号