首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
为探讨肿瘤转移与细胞表面的糖结构的关系,对小鼠肝癌细胞的高、低淋巴道转移株Hca-F和Hca-P进行了蛋白质电泳及经蛋白质印迹术后的5种凝集素(ConA、WGA、UEA、SBA、PNA)结合糖蛋白谱的对比分析.结果表明:高、低转移两株细胞的SDS-PAGE谱基本相同;ConA特异结合糖蛋白共有5种(~72,80~90,~104,~150,~200kD);其中较明显的差异为~72kDConA特异结合糖蛋白,它在Hca-P细胞的表达明显高于Hca-F细胞.WGA特异结合糖蛋白1种(~150kD),在Hca-P细胞的表达略高于Hca-F细胞.此外,实验发现两种性质未明的蛋白质(~79,~130kD),后者在Hca-P细胞的含量明显高于Hca-P细胞.结果提示Hca-F和Hca-P细胞不同的转移表型可能与其糖蛋白的表达有一定的关联.  相似文献   

2.
DDPH[1-(2.6-二甲基苯乙氧基)-2-(3.4二甲氧基苯乙胺基)丙烷盐酸盐]是南京药科大学合成的降压新化合物,也具有降低肺动脉高压和抑制肺动脉平滑肌细胞增殖作用。本实验用细胞培养、免疫细胞化学、图像分析、3H-TdR、细胞周期测定等方法,进一步探讨DDPH对缺氧性肺动脉平滑肌细胞(PASMCS)增殖的抑制机制。结果:缺氧促进肺动脉内皮细胞(PAECs)的PDGF·BB和bFGF两种生长因子的表达(积分光密度OD值)增高。缺氧内皮细胞条件培养液(HECCM)能促进PASMCS的PDGF·BB的OD值增高,bFGF的OD值无明显改变。加药组(HEC-CM+DDPH)的PDGF·BB和bFGF的OD值均显著降低,尤以PDGF·BB的OD值减少最多.提示:DDPH能抑制HECCM引起PASMCS的PDGF·BB和bFGF表达增多和细胞增殖。结果与大鼠实验观察相符。  相似文献   

3.
轻稀土离子对钙调蛋白激活的磷酸二酯酶活力作用的影响   总被引:5,自引:2,他引:3  
研究了轻稀土离子(Ln3+)对钙调蛋白(CaM)调控的磷酸二酯酶(PDE)活力的影响。结果表明,在无Ca2+的CaM(Apo—CaM)体系中,由CaM调节的PDE的活力随Ln3+浓度的变化曲线是双相效应,即在高浓度时,Ln3+具有抑制CaM调节PDE活力的能力;低浓度的Ln3+可以提高CaM调节PDE活力的能力。在Ca2+4-CaM-PDE体系中,高浓度的Ln3+的加入能抑制ChM调节PDE活力的能力,其抑制程度因其离子不同而异。CaM的两类拮抗剂JuA(非竞争性抑制剂)和TFP(竞争性抑制剂)都能抑制CaM-Ln3+-PDE系统的活性。最后对Ln3+和CaM相互作用的分子机制进行了初步的讨论。  相似文献   

4.
水分胁迫下Ca ̄(2+)、PEG预处理对小麦幼苗保护酶系统活性的影响洪法水,马成仓,董振吉,周谋文(淮北煤炭师范学院生物系,淮北235000)EFFECTSOFCA ̄(2+).PEGPRETREATMENTONDEFENSIVEENZYMESACTI...  相似文献   

5.
Yao ZX 《生理科学进展》1998,29(2):133-136
本实验对人脐静脉内皮细胞(HUVEC)合成与释放篾这活性多肽(VPs)及其作用机制进行了研究。结果表明:(1)无神经支配的人脐血管内皮细胞(VEC)所含VPs较有神经支配的肠系膜血管VEC多;(2)这些VPS是VEC自身合成且能释放到胞外;(3)血管活性肠肽(VIP)和P物质(SP)使HUVEC膜上Ca^2+通道开放概率明显增加,生长抑制(SOM)使其明显降低,但它们均使胞浆内「Ca^2+」和CA  相似文献   

6.
用海水灌注的方法诱发海水淹溺肺水肿(PESWD),采取高频喷射通气(HFJV)治疗之。以细胞化学反应和图像定量分析为手段从碱性磷酸酶(AKP)角度研究其病理生理变化机理。结果表明,海水灌注后AKP产物数量和密度显著增加,HFJV治疗后均回落至接近正常水平。推测PESWD引起AKP活性代偿性升高,HFJV后,肺部氧供应改善可能是导致AKP活性下降的原因  相似文献   

7.
通过测定含β-桐酸(β-ESA)的双棕榈酰磷脂酰胆碱(DPPC)脂质体在加入Ca(2+)后浊度,粒度及内包荧光物释放的变化,研究了Ca(2+)与DPPC/β-ESA脂质体的相互作用,结果表明,DPPC/β-ESA脂质体是一类对外加Ca(2+)敏感的脂质体,Ca(2+)的作用首先是引起脂质体间的集聚然后使脂质体融合;此时加速脂质体内包荧光物的释放。  相似文献   

8.
采用荧光分光光度计法检测维甲酸(RA)、1,25(OH)2VD3及佛波酯(PMA)诱导CCL229细胞分化后[Ca2+]i变化,并观察内质网(ER)特异的Ca2+-ATPase抑制剂Thapsigargin(TG)、IP3受体抑制剂Heparin对RA诱导[Ca2+]i变化的影响,从而探讨RA诱导[Ca2+]i变化与ER的关系。结果显示:RA和1,25(OH)2VD3在数秒内引起[Ca2+]i显著升高。在EGTA和Verapamil预处理细胞条件下,TG不能抑制RA引起Ca2+从细胞内钙池中外流,RA作用后TG仍能升高[Ca2+]i。另外,Heparin也不能完全抑制RA升高[Ca2+]i。提示RA诱导大肠癌细胞升高[Ca2+]i可能通过ER上IP3敏感性和非敏感性钙池,亦可能细胞内存在除ER外对RA敏感的钙池。  相似文献   

9.
将编码丙型肝炎病毒(HCV)E2蛋白417~750位氨基酸的DNA片段 克隆到真核表达载体pcDNA 3.1(-)中的CMV IE启动子下游,构建成HCV E2重组真核表达质粒 pcE2。ELISA法检测pcE2 DNA免疫兔血清中的E2抗体变化和维持规律,结果显示免疫20d已有 抗体产生,30d后开始进入高峰,40d时达到最高值,至第90d抗体水平保持平稳,抗体滴度 达到1∶1600左右。流式细胞计数仪(FACS)检测pcE2 DNA免疫鼠CD4+、CD8+T淋巴细胞变 化情况,与注射空载体pCDNA3.1(-)的阴性鼠相比,CD4+淋巴细胞水平略有上升,CD8+ 细胞水平有较大升高,增幅达35.46%。免疫组化检测结果显示注射pcE2的小鼠组织中有明显 的阳性着色,而注射pcDNA3.1(-)的对照组小鼠免疫组化结果为阴性。以上结果表明:pcE2 在实验动物内表达出的HCV E2蛋白可以引起免疫动物的体液免疫应答和细胞免疫应答,尤其 是MHC-1限制性杀伤性CD8+T淋巴细胞水平的提高对清除 病毒是十分有利的,因此HCV E2 DNA免疫有可能成为预防和治疗HCV感染的一条新途径。  相似文献   

10.
骤冷与饥饿对小鼠肝脏影响的实验研究   总被引:4,自引:0,他引:4  
为探讨饥饿及饥饿与骤冷对动物肝脏的影响,本实验用健康昆明种小鼠25只,随机分成正常组5只,饥饿组10只,饥饿后再予冷刺激组10只(下称骤冷组)。采用组织化学及酶组织化学方法观察糖原(PAS反应)、SDH(琥珀酸脱氢酶),LDH(乳酸脱氢酶),ChE(胆碱酯酶)、Mg2+-ATPase(镁激活三磷酸腺苷酶),ACP(酸性磷酸酶)。结果提示:饥饿时肝脏PAS反应,SDH,Mg2+-ATPase、ChE活性显著下降,而ACP活性明显增强;饥饿后骤冷时PAS(反应)、SDH、ChE更显著下降,而ACP及Mg2+-ATPase活性反而增强。  相似文献   

11.
1. Rates of Ca2+ inflow across the hepatocyte plasma membrane in the presence of vasopressin were estimated by using quin2. 2. Plots of the rate of Ca2+ inflow as a function of the intracellular quin2 concentration reached a plateau at about 1.7 mM intracellular quin2. Ca2+ inflow was inhibited by 60% in the presence of 400 microM-verapamil. 3. A plot of the rate of Ca2+ inflow as a function of the concentration of extracellular Ca2+ ([Ca2+]o) was biphasic. The second (slower) phase showed no sign of saturation at values of [Ca2+]o up to 5 mM. It is concluded that, in the presence of vasopressin, Ca2+ flows into the liver cell by two different processes, one of which is not readily saturated by Ca2+o. 4. The effect of the replacement of extracellular NaCl by choline or tetramethylammonium chloride on cellular Ca2+ movement was found to depend on the presence or absence of intracellular quin2. 5. In cells loaded with quin2 and incubated in the presence of choline or tetramethylammonium chloride, a small decrease in the basal intracellular free Ca2+ concentration ([Ca2+]i) was observed, and the increase in [Ca2+]i caused by the addition of vasopressin was considerably diminished when compared with cells incubated in the presence of NaCl. In cells loaded with quin2, replacement of NaCl by choline chloride caused a decrease in Ca2+ inflow in the presence of vasopressin, as measured by using quin2 or 45Ca2+ exchange, whereas no change in Ca2+ inflow was observed in the absence of vasopressin. 6. In cells not loaded with quin2, replacement of NaCl by choline chloride did not alter Ca2+ inflow either in the presence or in the absence of vasopressin. 7. It is concluded that (i) Ca2+ inflow through the basal and receptor-activated Ca2+ inflow systems does not involve the inward movement of Ca2+ in exchange for Na+ or the induction of Ca2+ inflow by intracellular Na+, and (ii) the presence of both intracellular quin2 and extracellular choline or tetramethylammonium chloride (in place of NaCl) inhibits Ca2+ inflow through the receptor-activated Ca2+ inflow system but not through the basal Ca2+ inflow system, and inhibits the release of Ca2+ from intracellular stores.  相似文献   

12.
T Sakai  Y Okano  Y Nozawa  N Oka 《Cell calcium》1992,13(5):329-340
Effects of protein kinase C (PKC) on bradykinin (BK)-induced intracellular calcium mobilization, consisting of rapid Ca2+ release from internal stores and a subsequent sustained Ca2+ inflow, were examined in Fura-2-loaded osteoblast-like MC3T3-E1 cells. The sustained Ca2+ inflow as inferred with Mn2+ quench method was blocked by Ni2+ and a receptor-operated Ca2+ channel blocker SK&F 96365, but not by nifedipine. The short-term pretreatment with phorbol 12-myristate 13-acetate (PMA), inhibited BK-stimulated Ca2+ inflow, and the prior treatment with PKC inhibitors, H-7 or staurosporine, enhanced the initial internal release and reversed the PMA effect. Moreover, 6 h pretreatment with PMA caused similar effect on the BK-induced inflow to that obtained with PKC inhibitors, whereas 24 h pretreatment was necessary to affect the internal release. On the other hand, the translocation and down-regulation of PKC isozymes were examined after PMA treatment of MC3T3-E1 cells by immunoblot analyses of PKCs with the isozyme-specific antibodies. 6 h treatment with PMA induced down-regulation of PKC beta, whereas longer treatment was needed for down-regulation of PKC alpha. Taken together, it was suggested that the BK-induced initial Ca2+ peak and the sustained Ca2+ inflow through the activation of a receptor-operated Ca2+ channel, are differentially regulated by PKC isozymes alpha and beta, respectively, in osteoblast-like MC3T3-E1 cells.  相似文献   

13.
本研究采用正负交变加速度旋转刺激法制备大鼠运动病模型,并用钙离子(Ca2+)超微结构定位法观察了运动病大鼠大脑皮质、小脑皮质和脑干前庭区神经细胞中的Ca2+变化。结果表明,运动病大鼠大脑皮质、小脑皮质和脑干前庭区神经细胞胞质基质、线粒体和内质网中Ca2+反应产物增多。提示运动病的发生与中枢神经细胞Ca2+内流有关。  相似文献   

14.
Vasopressin (VP) release from the hypothalamo-neurohypophyseal system (HNS) is stimulated by ATP activation of P2X purinergic receptors and by activation of 1-adrenergic receptors by phenylephrine (PE). These responses are potentiated by simultaneous exposure to ATP+PE. Potentiation was blocked by depleting intracellular calcium stores with thapsigargin. To test the hypothesis that the synergistic response to ATP+PE reflects alterations in the intracellular calcium concentration ([Ca2+]i), [Ca2+]i was monitored in supraoptic neurons in HNS explants loaded with fura 2-AM. Both ATP and PE induced rapid, but transient, elevations in [Ca2+]i. In 0.3 mM Ca2+, the peak response to ATP was greater than to PE but did not differ from the peak response to ATP+PE. A sustained elevation in [Ca2+]i was induced by ATP+PE, that was greater than ATP or PE alone. In 2 mM Ca2+, the peak response to ATP+PE was significantly greater than to either ATP or PE alone, and the sustained response to ATP+PE was greater than to either agent alone. Responses were comparable in the presence of TTX. The sustained elevation in [Ca2+]i was also observed when ATP+PE was removed after 1 min, but it was eliminated by either thapsigargin or removing external calcium, indicating that both calcium influx and calcium release from internal stores are required. Some cells were vasopressinergic based on a VP-induced increase in [Ca2+]i. These observations support the hypothesis that simultaneous exposure to ATP+PE induces a different pattern of [Ca2+]i than either agent alone that may initiate events leading to synergistic stimulation of VP release.  相似文献   

15.
The bangiophycean filamentous red alga Bangia atropurpurea is distributed in freshwater habitats such as littoral and splash zones of lakes or rapid currents distant from the sea. In these habitats, the distribution and growth of this alga appear to be related to hard water rich in calcium ions. To characterize the eco-physiological properties of this calciphilic red alga, we examined the effects of long-term and short-term Ca(2+) depletion on photosynthetic growth of the thallus and on the phycobilisome. Long-term culture experiments suggested that higher Ca(2+) concentrations (>50mgL(-1)) were required to sustain thallus growth and pigmentation of cells. In short-term Ca(2+)-depletion treatments, fluorescence derived from phycoerythrin (PE) fluctuated, although the absorption spectra of the thalli did not change. After 30 min of Ca(2+) depletion, the fluorescence lifetime of PE became markedly longer, indicating that the energy transfer from PE to phycocyanin (PC) was suppressed. The fluorescence lifetime of PE returned to its original value within a short time after 4h of Ca(2+) depletion, however, energy transfer from PE to PC was still suppressed. This suggested that the excitation energy absorbed by PE was quenched during prolonged Ca(2+) depletion. The efficient energy transfer from PC and allophycocyanin were unchanged during these treatments.  相似文献   

16.
A rise in cytosolic free Ca2+ is the immediate trigger for contraction in heart muscle. In the present study, we investigated changes of intracellular Ca2+ increased by potassium chloride (KCl) and phenylephrine (PE) under hyperglycemia in rat heart myoblast H9c2 cells (BCRC 60096), respectively. We employed the fluorescent Ca2+-indicator, fura-2, and digital imaging microscopy to measure [Ca2+]i in H9c2 cells. Cells were cultured in hyperglycemic (30 mM glucose) Dulbecco's Modified Eagle's Medium. The variation of [Ca2+]i induced by KCI and PE in hyperglycemia was examined, respectively. Moreover, tiron, one of the antioxidants, was pretreated in hyperglycemia-treated H9c2 cells to measure the role of free radicals in the changes of intracellular [Ca2+]i. An influx in intracellular Ca2+ induced by KCl or PE was observed in a dose-dependent manner and reached the highest concentration of 434 +/- 42.3 nM and 443 +/- 42.8 nM (n = 24 cells), respectively. Moreover, this increase of intracellular [Ca2+]i induced by KCl or PE was markedly reduced in cells exposed to hyperglycemia (434 +/- 42.3 vs. 1.26 +/- 0.21 nM and 443 +/- 42.8 vs. 2.54 +/- 0.25 nM, n = 24 cells, P < 0.001, respectively). Similar changes were not observed in cells received mannitol showing same osmolarity. However, the reduction of intracellular [Ca2+]i induced by hyperglycemia was abolished significantly in the presence of tiron. Our results suggest that an increase of intracellular Ca2+ by KCl or PE in heart cell was markedly reduced by hyperglycemic treatment; mediation of free radicals in this action can be considered because it was reversed in the presence of tiron.  相似文献   

17.
Our objectives were to identify the relative contributions of intracellular free Ca2+ concentration ([Ca2+]i) and myofilament Ca2+ sensitivity in the pulmonary artery smooth muscle (PASM) contractile response to the alpha-adrenoreceptor agonist phenylephrine (PE) and to assess the role of PKC, tyrosine kinases (TK), and Rho kinase (ROK) in that response. Our hypothesis was that multiple signaling pathways are involved in the regulation of [Ca2+]i, myofilament Ca2+ sensitization, and vasomotor tone in response to alpha-adrenoreceptor stimulation of PASM. Simultaneous measurement of [Ca2+]i and isometric tension was performed in isolated canine pulmonary arterial strips loaded with fura 2-AM. PE-induced tension development was due to sarcolemmal Ca2+ influx, Ca2+ release from inositol 1,4,5-trisphosphate-dependent sarcoplasmic reticulum Ca2+ stores, and myofilament Ca2+ sensitization. Inhibition of either PKC or TK partially attenuated the sarcolemmal Ca2+ influx component and the myofilament Ca2+ sensitizing effect of PE. Combined inhibition of PKC and TK did not have an additive attenuating effect on PE-induced Ca2+ sensitization. ROK inhibition slightly decreased [Ca2+]i but completely inhibited myofilament Ca2+ sensitization. These results indicate that PKC and TK activation positively regulate sarcolemmal Ca2+ influx in response to alpha-adrenoreceptor stimulation in PASM but have relatively minor effects on myofilament Ca2+ sensitivity. ROK is the predominant pathway mediating PE-induced myofilament Ca2+ sensitization.  相似文献   

18.
Intracellular Ca2+ levels in human erythrocytes were increased by incubating them with variable concentrations of Ca2+ in the presence of ionophore A23187. Experiments were done to confirm that the Ca2+ loading did induce changes in the cell shape and membrane protein composition. The effect of the increased cytoplasmic Ca2+ levels on the membrane phospholipid organization was analysed using bee venom and pancreatic phospholipases A2, Merocyanine 540 and fluorescamine as the external membrane probes. About 20% phosphatidylethanolamine (PE) and 0% phosphatidylserine (PS) were hydrolysed by the phospholipases in intact control cells, whereas in identical conditions these enzymes readily degraded, 20-30% PE and 7-30% PS, in Ca2+-loaded erythrocytes, depending on the cytoplasmic Ca2+ concentration. Also, Merocyanine 540 failed to stain the fresh or control erythrocytes, but it labeled the cells loaded with Ca2+. Furthermore, fluorescamine labeled approx. 20% PE in fresh or control erythrocytes while in identical conditions, significantly higher amounts of PE were modified in intact Ca2+-loaded cells. These results demonstrate that Ca2+ loading in human erythrocytes leads to loss of the transbilayer phospholipid asymmetry, and suggest that, together with spectrin, polypeptides 2.1 and 4.1 may also play an important role in maintaining the asymmetric distribution of various phospholipids across the erythrocyte membrane bilayer.  相似文献   

19.
The interactions of PE and its N-methylated derivatives (PME, PDE AND PC) WITH Ca2+ were examined. PE and the intermediate phospholipids of PE N-methylation (PME and PDE) interacted with Ca2+ in a pH-dependent and reversible manner. When these phospholipids were present in the heptane phase, Ca2+ in the aqueous phase was translocated into the heptane phase at alkaline pH but not at acidic pH. PDE was also effective for the translocation even at around neutral pH, while PC hardly translocated Ca2+ at pH 6.0-9.2. The amounts of Ca2+ interacting with these phospholipids were in the following order: PDE is greater than PME is greater than PE is much greater than PC. P1, phosphatidic acid and PS interacted with Ca2+ in the whole pH range examined. The Ca2+ interactions with P1 and phosphatidic acid were independent of pH, while PS interacted with more Ca2+ at alkaline pH. These phospholipids interacted with Ca2+ most strongly among the cations studied. Liposomes containing PDE also bound the highest amounts Ca2+ among PE and its N-methylated derivatives. Furthermore, mammalian cultured cell membranes, which contain increased amounts of PDE by in vivo modification with N,N'-dimethylethanolamine, bound more Ca2+ than those prepared from choline-treated control cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号