首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8?±?0.0 and 27.1?±?0.1?mN?m(-1), respectively. Additionally, at 72?h of cultivation, 441.06 and 267.56?mg?L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.  相似文献   

2.
Candida antarctica (sp. SY16) required avegetable oil as the carbon source to produce a biosurfactant, mannosylerythritol lipid (MEL-SY16). Biosurfactant production was 31 g l–1 after 7 days in a batch culture and was not growth associated. In a two-stage culture, glycerol and oleic acid were used as an initial and a feeding carbon source, respectively, and 41 g l–1 biosurfactant was produced after 8 days.  相似文献   

3.
The thermophilic bacterium Alcaligenes faecalis isolated from the crude oil contaminated soil of Upper Assam, India. The isolated bacterium was first screened for the ability to produce biosurfactant. The strain growing at 42 °C could produce higher amount of biosurfactant in medium supplemented with 2% (v/v) diesel as sole source of carbon and energy. Biochemical characterizations including FT-IR and MS studies suggested the biosurfactant to be glycolipid. Tensiometric studies revealed that the biosurfactant produced by the bacterial strain could decrease the surface tension (??) at air-water interface from 71.6 to 32.3 mNm−1 after 96 h of growth on hydrocarbon and possessed a low critical micelle concentration (CMC) value of approximately 38 mgl−1, indicating high surface activity. The culture supernatant containing the biosurfactant was found to be functionally stable at varying pH (2-12), temperature (100 and 121 °C) and salinity (1-6% NaCl, w/v) conditions. Both the culture broth and the cell free supernatant exhibited high emulsifying activity against the different hydrocarbons and the crude oil components. The increase in cell surface hydrophobicity and glycolipid production by the strain suggested the existence of biosurfactant enhanced interfacial uptake of the hydrocarbons. Moreover, the partially purified biosurfactant exhibited antimicrobial activity by inhibiting the growth of several bacterial and fungal species. The strain represented a new class of biosurfactant producers and could be a potential candidate for the production of glycolipid biosurfactant which could be useful in a variety of biotechnological and industrial processes, particularly in the oil industry.  相似文献   

4.
Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C and pH 2.0.  相似文献   

5.
The lipopeptide, surfactin, is produced by Bacillus subtilis. A study has been made on large-scale production of this surfactant. A good yield was obtained from a glucose substrate fermentation by continuously removing the product by foam fractionation. The surfactin could be easily recovered from the collapsed foam by acid precipitation. The yield was also improved by the addition of either iron or manganese salts. Hydrocarbon addition to the medium, which normally increases biosurfactant production, completely inhibited surfactin production by B. subtilis.  相似文献   

6.
Microbial surfactants are environmentally friendly products with amazing properties and spectrum of applications. It is therefore, not surprising that research has increased in recent time with the objectives of sourcing for novel surface-active compounds with dual functions in oil and pharmaceutical industries. Evaluation of hydrocarbon degrading potentials and emulsifying activities indicated that biosurfactants were produced by two newly isolated and promising yeast strains, Saccharomyces cerevisiae and Candida albicans, obtained from a polluted lagoon water. Both strains were able to grow effectively on crude oil and diesel as sole sources of carbon and energy. Growth curves on diesel were obtained to establish the relation between cell growth and biosurfactant production. The growth peak was on the 8th day while the specific growth rate ranged insignificantly (P < 0.05) between 0.46 and 0.48 day−1. Interestingly, biosurfactant was detected on the 2nd day when growth was almost inexistent, with maximal production obtained at stationary/death phase of growth. The partially-purified biosurfactants exhibited antimicrobial activities by completely inhibiting the growth of clinical strains of Escherichia coli and Staphylococcus aureus at all concentrations tested. Although C. albicans appeared to be a better diesel-utilizer and biosurfactant-producer (E24 = 64.2%), the potency of its surfactant was smaller than that of S. cerevisiae. These strains represent a new class of biosurfactant producers that have potential for use in a variety of biotechnological and industrial processes particularly in the pharmaceutical industry.  相似文献   

7.
Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD+ ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h−1 (1.6 g liter−1 h−1). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste.  相似文献   

8.
A Bacillus sp. strain DHT, isolated from oil-contaminated soil, grew and produced biosurfactant when cultured in variety of substrate at salinities of up to 100 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, various pure alkanes and PAHs as a sole carbon and energy source across a wide range of temperature and salinity. Over the range evaluated, the degradation of hydrocarbon and biosurfactant production was not influenced by salinity (0–10% wv−1) and temperature (30–45°C). The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as the best substrate and toluene as the poorest. From 16S rDNA analysis, strain DHT was related to Bacillus licheniformis.  相似文献   

9.
Biosurfactant-producing bacteria were isolated from the production water of an oil field. Isolates were screened for biosurfactant production using surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Brevibacilis brevis HOB1. It has been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the broth to 29 mN/m on commercial sugar and maltose, and to 32 mN/m on glucose after 72 h of growth. The maximum amount of biosurfactant was obtained when nitrate ions were supplied as nitrogen source. Biosurfactant produced by Brevibacilis brevis HOB1 was confirmed as a lipopeptide class of biosurfactant using TLC test and mass spectra. Lipopeptide isoforms were isolated from cell-free supernatants by acid-precipitation followed by one step of chromatographic separation on solid-phase ODS C18 column. The separation was confirmed by HPLC and ESI Q-TOF MS spectroscopy. Comparing the mass data obtained and the mass numbers reported for the lipopeptide complexes from other strains, it can be concluded that the major lipopeptide product of Brevibacilis brevis HOB1 is the surfactin isoform. This lipopeptide showed strong antibacterial and antifungal activity. It is a candidate for the biocontrol of pathogens in agriculture and other industries.  相似文献   

10.
Biosurfactants are considered to facilitate PAHs dissolution in soil slurries for bioremediation applications. In this work, the carbon and nitrogen sources, pH, C/N ratio, and salinity, were considered for optimization of biosurfactant production by Pseudomonas aeruginosa SP4 isolate to enhance pyrene removal from the contaminated soil. Analysis of ANOVA indicated that the carbon source was the most effective factor, followed by pH, nitrogen source, C/N ratio, and salinity. Taguchi experimental design proposed the optimum operating conditions of olive oil, NH4NO3, C/N ratio of 5, salinity of 0.5%, and pH 7. Applying the conditions determined by Taguchi design led to a production yield of 452 mg L?1 (13% improvement) at the optimum conditions. The main characteristics of produced biosurfactant included the critical micelle concentration (CMC) of 60 mg L?1 and liquid medium surface tension of 29.5 mN m?1. Produced biosurfactant was used for bioremediation of soil artificially contaminated with 500 mg kg?1 of pyrene. Following the addition of 250 mg L?1 biosurfactant, the pyrene removal of 84.6% was obtained compared to 59.8% for control sample without any surfactant.  相似文献   

11.
Phytoremediation efficiency of Alfa alfa (Medicago sativa) was evaluated in hydrocarbon-contaminated soil with the combined application of 1-aminocyclopropane-1-carboxylate (ACC) deaminase–producing Bacillus sp. PVMX4 and an isolated biosurfactant from this strain. Results on the plant growth–promoting (PGP) traits of Bacillus sp. PVMX4 revealed that phosphate (P) solubilization, indole-3-acetic acid (IAA) production, and ACC deaminase activity were not affected by low-concentration hydrocarbon amendment in the form of crude oil. Bacillus sp. PVMX4 was able to utilize crude oil as a sole carbon source in mineral salt medium (MSM), and this strain synthesized significant quantities of biosurfactant in growth medium quantified by an emulsification index of 69.2 EI24% and surface tension reduction of 26.2 mN/m at the end of the experimental period. Biosurfactant, when partially purified and characterized by thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR), revealed it to be a lipopeptide-type biosurfactant. Pilot-scale phytoremediation studies conducted under growth chamber conditions in hydrocarbon-contaminated soil using Medicago sativa along with combined application of ACC deaminase–containing bacteria and biosurfactant recorded 76.4% hydrocarbon degradation.  相似文献   

12.
In this study, crude glycerol with high potassium concentration was purified using acid treatment and used as carbon source for lipid production using Yarrowia lipolytica SKY7. The crude glycerol was purified using phosphoric acid (pH 2) followed by centrifugation. When purified glycerol was used as carbon source for fermentation, higher biomass productivity (0.54 g/L/h) and lipid productivity (0.2 g/L/h) was observed at 96 h compared to crude glycerol. Results indicated that 6.32 g/L potassium in crude glycerol medium was inhibitory for cell growth and lipid production by Y. lipolytica. Yield coefficients, productivities and specific growth rates were calculated for each glycerol medium. The process performance with purified glycerol medium was comparable to that of pure glycerol medium. A higher lipid yield was obtained in purified glycerol medium (0.21 g/g glycerol) than crude glycerol medium (0.124 g/g glycerol). During purification of crude glycerol, KH2PO4 was also produced as by-product. This study provides a way for valorization of crude glycerol with high potassium concentration for microbial lipid production.  相似文献   

13.
Production of biosurfactant by crude oil degrading bacteria for use in microbial enhanced oil recovery was investigated. Crude oil utilizing bacteria were isolated from soil by enrichment method on oil agar at 30 °C for 5 days. The isolates were identified and screened for biosurfactant production using blood haemolysis and emulsification tests. IR and GC–MS analyses were carried out to detect the type of biosurfactant. The biosurfactant was purified and its stability at various pH, temperature and salinity levels was studied. The organisms were identified as: Achromobacter xylosoxidans subspecies xylosoxidans, Bacillus licheniformis, Proteus vulgaris, Proteus mirabilis, Serratia marcescens, Sphingomonas paucimobilis and Micrococcus kristinae. Emulsification test (E24) revealed that Serratia marcescens had the highest emulsification index of 87%. GC–MS indicated the biosurfactants as lipopeptides. The biosurfactant can be used in EOR under various environmental conditions.  相似文献   

14.
The yeast Candida tropicalis, isolated from petroleum-contaminated soil in India, was found to be the potent producer of biosurfactant in mineral salt media containing diesel oil as the carbon source and found to be an efficient degrader of diesel oil (98%) over a period of 10 days. The crude biosurfactant decreased the surface tension of cell-free broth, 78 to 30 mN/m, with a large oil displacement area and highly positive drop collapse test. The crude biosurfactant was purified using silica gel column chromatography followed by dialysis. With the use of Fourier transform infrared (FT-IR) spectroscopy, in combination with gas chromatography–mass spectrometry (GC-MS) analysis, chemical structures of the purified biosurfactant was identified as sophorolipid species. Involvement of biosurfactant in physiological mechanism of diesel adsorption on yeast cell surface was characterized based on zeta potential. When diesel oil was emulsified with biosurfactant, the surface charge of the diesel was modified, resulting in more adsorption of diesel on yeast cell surface. Biosurfactant production by yeast species was monitored using scanning electron microscopy (SEM) analysis and found that yeast species could form thick mat of mucilaginous biosurfactant that could interconnect the individual cells. Uptake of diesel oil by C. tropicalis was elucidated through transmission electron microscopy (TEM) analysis. Interestingly, it was observed that internalization of diesel oil droplet was taking place, suggesting a mechanism similar in appearance to active pinocytosis.  相似文献   

15.
A marine bacterium, Myroides sp. SM1, can grow on weathered crude oil and show emulsification of it. The biosurfactant able to emulsify crude oil was excreted in culture supernatant of Myroides sp. SM1 grown on marine broth, which was extracted with chloroform/methanol (1:1) at pH 7 and purified by normal and reverse phase silica gel column chromatographies. The compound was ninhydrin-positive, and the chemical structure was elucidated by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), fast atom bombardment mass spectrometry, and gas chromatography–mass spectrometry (GC-MS) to be a mixture of l-ornithine lipids, which were composed of l-ornithine and a different couple of iso-3-hydroxyfatty acid (C15–C17) and iso-fatty acid (C15 or C16) in a ratio of 1:1:1. The critical micelle concentration for a mixture of ornithine lipids was measured to be approximately 40 mg/l. A mixture of ornithine lipids exhibited emulsifying activity for crude oil in a broad range of pH, temperature, and salinity and showed higher surface activity for oil displacement test than other several artificial surfactants and a biosurfactant, surfactin.  相似文献   

16.
A marine Bacillus circulans DMS-2 was able to grow and produce biosurfactant on glucose mineral salts medium (GMSM) with a reduction in the surface tension up to 27 mN m−1. The microorganism produced 1.64 ± 0.1 g l−1 of crude biosurfactant. The lipopeptide nature of the produced biosurfactant was confirmed by primulin and ninhydrin assays using High Performance Thin Layer Chromatography (HPTLC). Preparative thin layer chromatography (TLC) was performed to purify the lipopeptides from the crude biosurfactant. The critical micelle concentrations (CMC) of the crude and purified products were found to be 90 and 40 mg l−1 respectively. Fourier transform infrared spectrophotometer (FTIR) and matrix assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectral analysis revealed the identity of the produced lipopeptides as surfactin (m/z 1,023 Da) and fengycin (m/z 1,495 Da) isoforms. The purified marine lipopeptides displayed a significant antiproliferative activity against the human colon cancer cell lines HCT-15 (IC50 80 μg ml−1) and HT-29 (IC50 120 μg ml−1).  相似文献   

17.
Aims: To study the bacterial diversity associated with hydrocarbon biodegradation potentiality and biosurfactant production of Tunisian oilfields bacteria. Methods and Results: Eight Tunisian hydrocarbonoclastic oilfields bacteria have been isolated and selected for further characterization studies. Phylogenetic analysis revealed that three thermophilic strains belonged to the genera Geobacillus, Bacillus and Brevibacillus, and that five mesophilic strains belonged to the genera Pseudomonas, Lysinibacillus, Achromobacter and Halomonas. The bacterial strains were cultivated on crude oil as sole carbon and energy sources, in the presence of different NaCl concentrations (1, 5 and 10%, w/v), and at 37 or 55°C. The hydrocarbon biodegradation potential of each strain was quantified by GC–MS. Strain C450R, phylogenetically related to the species Pseudomonas aeruginosa, showed the maximum crude oil degradation potentiality. During the growth of strain C450R on crude oil (2%, v/v), the emulsifying activity (E24) and glycoside content increased and reached values of 77 and 1·33 g l?1, respectively. In addition, the surface tension (ST) decreased from 68 to 35·1 mN m?1, suggesting the production of a rhamnolipid biosurfactant. Crude biosurfactant had been partially purified and characterized. It showed interest stability against temperature and salinity increasing and important emulsifying activity against oils and hydrocarbons. Conclusions: The results of this study showed the presence of diverse aerobic bacteria in Tunisian oilfields including mesophilic, thermophilic and halotolerant strains with interesting aliphatic hydrocarbon degradation potentiality, mainly for the most biosurfactant produced strains. Significance and Impact of the Study: It may be suggested that the bacterial isolates are suitable candidates for practical field application for effective in situ bioremediation of hydrocarbon‐contaminated sites.  相似文献   

18.
A potential glycolipid biosurfactant producer Streptomyces sp. MAB36 was isolated from marine sediment samples. Medium composition and culture conditions for the glycolipid biosurfactant production by Streptomyces sp. MAB36 were optimized, using two statistical methods: Plackett–Burman design was applied to find out the key ingredients and conditions for the best yield of glycolipid biosurfactant production and central composite design was used to optimize the concentration of the four significant variables, starch, casein, crude oil and incubation time. Fructose and yeast extract were the best carbon and nitrogen sources for the production of the glycolipid biosurfactant. Biochemical characterizations including FTIR and MS studies suggested the glycolipid nature of the biosurfactant. The isolated glycolipid biosurfactant reduced the surface tension of water from 73.2 to 32.4 mN/m. The purified glycolipid biosurfactant showed critical micelle concentrations of 36 mg/l. The glycolipid biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and NaCl concentration. The purified glycolipid biosurfactant showed strong antimicrobial activity. Thus, the strain Streptomyces sp. MAB36 has proved to be a potential source of glycolipid biosurfactant that could be used for the bioremediation processes in the marine environment.  相似文献   

19.
Criteria selected for screening of biosurfactant production by Bacillus megaterium were hemolytic assay, bacterial cell hydrophobicity and the drop-collapse test. The data on hemolytic activity, bacterial cell adherence with crude oil and the drop-collapse test confirmed the biosurfactant-producing ability of the strain. Accordingly, the strain was cultured at different temperatures, pH values, salinity and substrate (crude oil) concentration in mineral salt medium to establish the optimum culture conditions, and it was shown that 38°C, 2.0% of substrate concentration, pH 8.0 and 30‰ of salt concentration were optimal for maximum growth and biosurfactant production. Laboratory scale biosurfactant production in a fermentor was done with crude oil and cheaper carbon sources like waste motor lubricant oil and peanut oil cake, and the highest biosurfactant production was found with peanut oil cake. Characterization of partially purified biosurfactant inferred that it was a glycolipid with emulsification potential of waste motor lubricant oil, crude oil, peanut oil, diesel, kerosene, naphthalene, anthracene and xylene.  相似文献   

20.
The ability of a Bacillus subtilis strain to grow and produce biosurfactant on different carbon and nitrogen sources under thermophilic conditions (45°C) was studied. The strain was able to reduce surface tension to 34 dynes cm−1 on 2% sucrose, and 32 dynes cm−1 on starch after 96 h of growth. The biosurfactant was stable at 100°C and within a wide pH range (3.0–11.0). Biosurfactant formation at mesophilic conditions (30°C) was also studied. The organism was able to produce the maximum amount of biosurfactant when nitrate ions were supplied as the nitrogen source. The potential application of the biosurfactant in oil recovery from desert oil fields, acidic and alkaline environments is demonstrated. The biosurfactant was identical to surfactin as confirmed by TLC and IR analysis. Received 29 May 1997/ Accepted in revised form 03 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号