首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Preliminary characterization of a biosurfactant-producing Azotobacter chroococcum isolated from marine environment showed maximum biomass and biosurfactant production at 120 and 132 h, respectively, at pH 8.0, 38°C, and 30‰ salinity utilizing a 2% carbon substrate. It grew and produced biosurfactant on crude oil, waste motor lubricant oil, and peanut oil cake. Peanut oil cake gave the highest biosurfactant production (4.6 mg/mL) under fermentation conditions. The biosurfactant product emulsified waste motor lubricant oil, crude oil, diesel, kerosene, naphthalene, anthracene, and xylene. Preliminary characterization of the biosurfactant using biochemical, Fourier transform infrared spectroscopy, and mass spectral analysis indicated that the biosurfactant was a lipopeptide with percentage lipid and protein proportion of 31.3:68.7.  相似文献   

2.
AIM: Production and characterization of biosurfactant from renewable sources. METHODS AND RESULTS: Biosurfactant production was carried out in 3-l fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (9.8 mg ml(-l)) and biosurfactant production (6.4 mg ml(-l)) occurred with peanut oil cake at 120 and 132 h, respectively. Chemical characterization of the biosurfactant revealed that it is a glycolipopeptide with chemical composition of carbohydrate (40%), lipid (27%) and protein (29%). The biosurfactant is able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene; the emulsification activity was comparatively higher than the activity found with Triton X-100. CONCLUSION: This study indicates the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources like waste motor lubricant oil and peanut oil cake. Emulsification activity found with the biosurfactant against different hydrocarbons showed the possibility of the application of biosurfactants against diverse hydrocarbon pollution. SIGNIFICANCE AND IMPACT OF THE STUDY: The data obtained from the study could be useful for large-scale biosurfactant production using economically cheaper substrates. Information obtained in emulsification activity and laboratory-scale experiment on bioremediation inferred that bioremediation of hydrocarbon-polluted sites may be treated with biosurfactants or the bacteria that produces it.  相似文献   

3.
This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.  相似文献   

4.
Lactobacillus delbrueckii cultured with peanut oil cake as the carbon source yielded 5.35 mg ml(-1) of biosurfactant production. Five sets of microcosm biodegradation experiments were carried out with crude oil as follows: set 1 - bacterial cells+crude oil, set 2 - bacterial cells+crude oil+fertilizer, set 3 - bacterial cells+crude oil+biosurfactant, set 4 - bacterial cells+crude oil+biosurfactant+fertilizer, set 5 - with no bacterial cells, fertilizer and biosurfactant (control). Maximum degradation of crude oil was observed in set 4 (75%). Interestingly, when biosurfactant and bacterial cells were used (set 3), significant oil biodegradation activity occurred and the difference between this treatment and that in set 4 was 7% higher degradation level in microcosm experiments. It is evident from the results that biosurfactants alone is capable of promoting biodegradation to a large extent without added fertilizers.  相似文献   

5.
Biosurfactant-producing bacteria were isolated from mangrove sediment in southern Thailand. Isolates were screened for biosurfactant production by using the surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Oleomonas sagaranensis AT18. It has also been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the culture supernatant to 25?mN/m. In all 5.30?g of biosurfactant yield was obtained after 54?h of cultivation by using molasses and NaNO(3) as carbon and nitrogen sources, respectively. The biosurfactant recovery by chloroform:methanol extraction showed a small critical micelle concentration value (8?mg/l), thermal and pH stability with respect to surface tension reduction. It also showed emulsification activity and a high level of salt concentration. The biosurfactant obtained was confirmed as a glycolipid by using a biochemical test, FT-IR and mass spectra. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.  相似文献   

6.
Biosurfactant production by Candida glabrata was studied using vegetable fat waste as substrate. A factorial design was initially carried out to investigate the effects and interactions of waste, yeast extract and glucose on the surface tension after 144 h cultivation. Maximum surface tension reduction was achieved with vegetable fat waste at 5% and yeast extract at 0.2%. The biosurfactant containing cell-free broth retained its surface-active properties after incubation at high temperatures, at a wide range of pH values and salt concentrations. Comparison between three solvent systems for surfactant recovery showed that ethyl acetate extracted both crude extracellular and intracellular biosurfactant with high product recovery. The isolated extracellular biosurfactant showed a CMC of 1% and the surface tension at that point was 24 mN m−1. Preliminary chemical composition revealed the presence of carbohydrates, proteins and lipids. The application of the crude biosurfactant to a soil–water-hydrophobic contaminant system was investigated and the apparent critical micelle concentration was determined at 7% of the broth, although the best oil removal (92.6%) had been obtained with 10% of the cell-free broth. The cost of application of the biosurfactant in soils was estimated based on the cost of a commercial biosurfactant.  相似文献   

7.
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693?mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.  相似文献   

8.
Halotolerant microorganisms able to live in saline environments offer a multitude of actual or potential applications in various fields of biotechnology. This is why some strains of Halobacteria from an Algerian culture collection were screened for biosurfactant production in a standard medium using the qualitative drop-collapse test and emulsification activity assay. Five of the Halobacteria strains reduced the growth medium surface tension below 40 mN m−1, and two of them exhibited high emulsion-stabilizing capacity. Diesel oil-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 35% sodium chloride or up to 25% ethanol in the aqueous phase. Emulsions were stable to three cycles of freezing and thawing. The components of the biosurfactant were determined; it contained sugar, protein and lipid. The two Halobacteria strains with enhanced biosurfactant producers, designated strain A21 and strain D21, were selected to identify by phenotypic, biochemical characteristics and by partial 16S rRNA gene sequencing. The strains have Mg2+, and salt growth requirements are always above 15% (w/v) salts with an optimal concentration of 15–25%. Analyses of partial 16S rRNA gene sequences of the two strains suggested that they were halophiles belonging to genera of the family Halobacteriaceae, Halovivax (strain A21) and Haloarcula (strain D21). To our knowledge, this is the first report of biosurfactant production at such a high salt concentration.  相似文献   

9.
Biosurfactant-producing bacteria were isolated from terrestrial and marine samples collected in areas contaminated with crude oil or its byproducts. Isolates were screened for biosurfactant/bioemulsifier production in different carbon sources (glucose, fructose, sucrose and kerosene) using the qualitative drop-collapse test. Glucose produced the highest number of positive results (17 of 185 isolates). All 17 isolates produced emulsions with kerosene and 12 exhibited high emulsion-stabilizing capacity, maintaining 50% of the original emulsion volume for 48 h. Eight of the 17 isolates reduced the growth medium surface tension below 40 mN m(-1) with 5 exhibiting this capacity in cell-free filtrates. Onset of biosurfactant production differed among the isolates, with some initiating synthesis during the exponential growth phase and others after the stationary phase was reached. Increasing temperature from 25 to 35 degrees C accelerated onset of biosurfactant production in only two isolates while pH (6.5-7.6) had no effect in any isolate tested. Isolation from petroleum contaminated sites using the screening protocol presented proved to be a rapid and effective manner to identify bacterial isolates with potential industrial applications.  相似文献   

10.
In this study, 11 bacteria isolated from Tapis crude oil–contaminated sites were identified by using biochemical tests and 16S rDNA gene sequencing. Their abilities to biodegrade Tapis crude oil was determined by gas chromatography before they were further screened for biosurfactant activity by employing qualitative (blood agar hemolysis, microplate assay, drop-collapse test), semiquantitative (emulsification formation), and quantitative (surface tension measurement) methods. Four isolates, namely, Acinetobacter baumanii UKMP-12T, Pseudomonas aeruginosa UKMP-14T, Rhodococcus sp. UKMP-5T, and Rhodococcus sp. UKMP-7T, exhibited high percentages in total petroleum hydrocarbon (TPH) degradation. A strong correlation between the emulsification index (E 24) and surface tension measurement (r s = +.866) as shown by Spearman rank correlation analysis suggested that these two methods were more reliable to predict biosurfactant activity. The TPH removal was also positively correlated to the ability of bacterial isolates to reduce the surface tension of growth medium, as revealed by Pearson correlation test (rp = +.886). In conclusion, not all the biosurfactant detection protocols employed were effective. Nevertheless, the measurement of surface tension and E 24 determination provided a rather rapid, easy, reproducible, and accurate result in identifying bacteria with biosurfactant-producing ability.  相似文献   

11.
To obtain predominant bacteria degrading crude oil, we isolated some bacteria from waste soybean oil. Isolated bacterial strain had a marked tributyrin (C4:0) degrading activity as developed clear zone around the colony after incubation for 24h at 37 degrees C. It was identified as Klebsiella sp. Y6-1 by analysis of 16S rRNA gene. Crude biosurfactant was extracted from the culture supernatant of Klebsiella sp. Y6-1 by organic solvent (methanol:chloroform:1-butanol) after vacuum freeze drying and the extracted biosurfactant was purified by silica gel column chromatography. When the purified biosurfactant dropped, it formed degrading zone on crude oil plate. When a constituent element of the purified biosurfactant was analyzed by TLC and SDS-PAGE, it was composed of peptides and lipid. The emulsification activity and stability of biosurfactant was measured by using hydrocarbons and crude oil. The emulsification activity and stability of the biosurfactant showed better than the chemically synthesized surfactant. It reduced the surface tension of water from 72 to 32 mN/m at a concentration of 40 mg/l.  相似文献   

12.
A biosurfactant-producing bacterium, isolate 2/3, was isolated from mangrove sediment in the south of Thailand. It was evaluated as a potential biosurfactant producer. The highest biosurfactant production (4.52 g/l) was obtained when the cells were grown on a minimal salt medium containing 25 % (v/v) palm oil decanter cake and 1 % (w/v) commercial monosodium glutamate as carbon and nitrogen sources, respectively. After microbial cultivation at 30 °C in an optimized medium for 96 h, the biosurfactant produced was found to reduce the surface tension of pure water to 25.0 mN/m with critical micelle concentrations of 8.0 mg/l. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity was investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pH and salt concentrations. The biosurfactant obtained was confirmed as a glycolipid type biosurfactant by using a biochemical test, fourier-transform infrared spectroscopy, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance polyaromatic hydrocarbons solubility.  相似文献   

13.
The thermophilic bacterium Alcaligenes faecalis isolated from the crude oil contaminated soil of Upper Assam, India. The isolated bacterium was first screened for the ability to produce biosurfactant. The strain growing at 42 °C could produce higher amount of biosurfactant in medium supplemented with 2% (v/v) diesel as sole source of carbon and energy. Biochemical characterizations including FT-IR and MS studies suggested the biosurfactant to be glycolipid. Tensiometric studies revealed that the biosurfactant produced by the bacterial strain could decrease the surface tension (??) at air-water interface from 71.6 to 32.3 mNm−1 after 96 h of growth on hydrocarbon and possessed a low critical micelle concentration (CMC) value of approximately 38 mgl−1, indicating high surface activity. The culture supernatant containing the biosurfactant was found to be functionally stable at varying pH (2-12), temperature (100 and 121 °C) and salinity (1-6% NaCl, w/v) conditions. Both the culture broth and the cell free supernatant exhibited high emulsifying activity against the different hydrocarbons and the crude oil components. The increase in cell surface hydrophobicity and glycolipid production by the strain suggested the existence of biosurfactant enhanced interfacial uptake of the hydrocarbons. Moreover, the partially purified biosurfactant exhibited antimicrobial activity by inhibiting the growth of several bacterial and fungal species. The strain represented a new class of biosurfactant producers and could be a potential candidate for the production of glycolipid biosurfactant which could be useful in a variety of biotechnological and industrial processes, particularly in the oil industry.  相似文献   

14.
The yeast Candida tropicalis, isolated from petroleum-contaminated soil in India, was found to be the potent producer of biosurfactant in mineral salt media containing diesel oil as the carbon source and found to be an efficient degrader of diesel oil (98%) over a period of 10 days. The crude biosurfactant decreased the surface tension of cell-free broth, 78 to 30 mN/m, with a large oil displacement area and highly positive drop collapse test. The crude biosurfactant was purified using silica gel column chromatography followed by dialysis. With the use of Fourier transform infrared (FT-IR) spectroscopy, in combination with gas chromatography–mass spectrometry (GC-MS) analysis, chemical structures of the purified biosurfactant was identified as sophorolipid species. Involvement of biosurfactant in physiological mechanism of diesel adsorption on yeast cell surface was characterized based on zeta potential. When diesel oil was emulsified with biosurfactant, the surface charge of the diesel was modified, resulting in more adsorption of diesel on yeast cell surface. Biosurfactant production by yeast species was monitored using scanning electron microscopy (SEM) analysis and found that yeast species could form thick mat of mucilaginous biosurfactant that could interconnect the individual cells. Uptake of diesel oil by C. tropicalis was elucidated through transmission electron microscopy (TEM) analysis. Interestingly, it was observed that internalization of diesel oil droplet was taking place, suggesting a mechanism similar in appearance to active pinocytosis.  相似文献   

15.
Candida lipolytica synthesized a surfactant in a cultivation medium supplemented with canola oil and glucose as carbon sources. Measurements of biosurfactant production and surface tension indicated that the biosurfactant was produced at 48 h of fermentation. The surface-active species is constituted by the protein–lipid–polysaccharide complex in nature. The cell-free broth was particularly influenced by the addition of salt, the pH and temperature depending on the emulsified substrate (hexadecane or a vegetable oil). After comparison between ethyl acetate and mixtures of chloroform and methanol as solvent systems for surfactant recovery, it was found that ethyl acetate was able to extract crude surfactant material with high product recovery (8.0 g/L). The isolated biosurfactant decreased the surface tension to values of 30 mN/m at the critical micelle concentration. Emulsification properties of the biosurfactant produced were compared to those of commercial emulsifiers and other microbial surfactants.  相似文献   

16.
Aims: To study the bacterial diversity associated with hydrocarbon biodegradation potentiality and biosurfactant production of Tunisian oilfields bacteria. Methods and Results: Eight Tunisian hydrocarbonoclastic oilfields bacteria have been isolated and selected for further characterization studies. Phylogenetic analysis revealed that three thermophilic strains belonged to the genera Geobacillus, Bacillus and Brevibacillus, and that five mesophilic strains belonged to the genera Pseudomonas, Lysinibacillus, Achromobacter and Halomonas. The bacterial strains were cultivated on crude oil as sole carbon and energy sources, in the presence of different NaCl concentrations (1, 5 and 10%, w/v), and at 37 or 55°C. The hydrocarbon biodegradation potential of each strain was quantified by GC–MS. Strain C450R, phylogenetically related to the species Pseudomonas aeruginosa, showed the maximum crude oil degradation potentiality. During the growth of strain C450R on crude oil (2%, v/v), the emulsifying activity (E24) and glycoside content increased and reached values of 77 and 1·33 g l?1, respectively. In addition, the surface tension (ST) decreased from 68 to 35·1 mN m?1, suggesting the production of a rhamnolipid biosurfactant. Crude biosurfactant had been partially purified and characterized. It showed interest stability against temperature and salinity increasing and important emulsifying activity against oils and hydrocarbons. Conclusions: The results of this study showed the presence of diverse aerobic bacteria in Tunisian oilfields including mesophilic, thermophilic and halotolerant strains with interesting aliphatic hydrocarbon degradation potentiality, mainly for the most biosurfactant produced strains. Significance and Impact of the Study: It may be suggested that the bacterial isolates are suitable candidates for practical field application for effective in situ bioremediation of hydrocarbon‐contaminated sites.  相似文献   

17.
Aims:  To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field.
Methods and Results:  Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l−1 NaCl and at 37°C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC–MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100.
Conclusions:  A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation.
Significance and Impact of the Study:  The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.  相似文献   

18.
The six biosurfactant-producing strains, isolated from oilfield wastewater in Daqing oilfield, were screened. The production of biosurfactant was verified by measuring the diameter of the oil spreading, measuring the surface tension value and emulsifying capacity against xylene, n-pentane, kerosene and crude oil. The experimental result showed three strains (S2, S3, S6) had the better surface activity. Among the three strains, the best results were achieved when using S2 strain. The diameter of the oil spreading of the biosurfactant produced by S2 strain was 14 cm, its critical micelle concentration (CMC) was 21.8 mg/l and the interfacial tension between crude oil and biosurfactant solution produced by S2 strain reduced to 25.7 mN/m. The biosurfactant produced by S2 strain was capable of forming stable emulsions with various hydrocarbons, such as xylene, n-pentane, kerosene and crude oil. After S2 strain treatment, the reduction rate of oil viscosity was 51 % and oil freezing point reduced by 4 °C.  相似文献   

19.
The production and properties of a biosurfactant, synthesized by Bacillus subtilis LB5a strain, using cassava wastewater as substrate were investigated. The microorganism was able to grow and to produce surfactant on cassava waste, reducing the surface tension of medium to 26.6 mN/m and giving a crude surfactant concentration of 3.0 g/L after 48 h. The surface-active compound retained its properties during exposure to elevate temperatures (100 degrees C), high salinity (20% NaCl) and a wide range of pH values. The surfactant was capable of forming stable emulsions with various hydrocarbons. Preliminary chemical characterization revealed that the surfactant has a lipopeptide composition with a CMC value of about 33 mg/L. Cassava wastewater proved to be a suitable substrate for biosurfactant biosynthesis, providing not only bacterial growth and product accumulation but also a surfactant that has interesting and useful properties with potential for many industrial applications.  相似文献   

20.
Inquilinus limosus strain KB3, isolated from marine sediment in the south of Thailand, was used to produce a biosurfactant from a mineral salts medium (MSM) with palm oil decanter cake (PODC) as a carbon source. It was found that cellular growth and biosurfactant production in MSM were greatly affected by the medium components. I. limosus KB3 was able to grow and to produce surfactant reducing the surface tension of medium to 28.2 mN/m and giving a crude surfactant concentration of 5.13 g/l after 54 h. The biosurfactant obtained was found to reduce the surface tension of pure water to 25.5 mN/m with the critical micelle concentration of 9 mg/l, and retained its properties during exposure to elevated temperatures (121 °C), high salinity (12 % NaCl), and a wide range of pH values. Chemical characterization by FT-IR, NMR, and ESI-MS revealed that the biosurfactant has a lipopeptide composition with molecular mass (m/z) of 1,032. The biosurfactant was capable of forming stable emulsions with various hydrocarbons and had the ability to enhance oil recovery, PAHs solubility, and antimicrobial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号