首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glycosylation is the most common form of posttranslational modification of proteins (50–80%). The isolation, discovery, and subsequent identification of glycosylated peptides and proteins is becoming more and more important in glycoproteomics and diagnosis. MALDI-TOF mass spectrometry is an ideal technique for identifying peptides and proteins and their corresponding modifications. The enrichment of glycosylated peptides and proteins from different sources can be attained by affinity chromatography supported by functionalized magnetic particles. Covalent coating of magnetic beads with Concanavalin A (ConA) and diboronic acid was performed by carbodiimide and poly-glutaraldehyde methods, respectively. The functionalized beads were employed to establish and optimize protocols for the binding and detection of glycosylated peptides and proteins with respect to an automated workflow and the subsequent detection and identification by MALDI-TOF mass spectrometry. For several model proteins, the capture and identification could be demonstrated by SDS-PAGE and MALDI-TOF mass spectrometry. According to the type of glycosylation (high man-nose, hybrid, or complex type) the different proteins were enriched by ConA or boronic acid–functionalized beads.  相似文献   

3.
Stable isotope standards and capture by antipeptide antibodies (SISCAPA) couples affinity enrichment of peptides with stable isotope dilution and detection by multiple reaction monitoring mass spectrometry to provide quantitative measurement of peptides as surrogates for their respective proteins. In this report, we describe a feasibility study to determine the success rate for production of suitable antibodies for SISCAPA assays in order to inform strategies for large-scale assay development. A workflow was designed that included a multiplex immunization strategy in which up to five proteotypic peptides from a single protein target were used to immunize individual rabbits. A total of 403 proteotypic tryptic peptides representing 89 protein targets were used as immunogens. Antipeptide antibody titers were measured by ELISA and 220 antipeptide antibodies representing 89 proteins were chosen for affinity purification. These antibodies were characterized with respect to their performance in SISCAPA-multiple reaction monitoring assays using trypsin-digested human plasma matrix. More than half of the assays generated were capable of detecting the target peptide at concentrations of less than 0.5 fmol/μl in human plasma, corresponding to protein concentrations of less than 100 ng/ml. The strategy of multiplexing five peptide immunogens was successful in generating a working assay for 100% of the targeted proteins in this evaluation study. These results indicate it is feasible for a single laboratory to develop hundreds of assays per year and allow planning for cost-effective generation of SISCAPA assays.  相似文献   

4.
Mass spectrometry has proved to be an important tool for protein biomarker discovery, identification and characterization. However, global proteomic profiling strategies often fail to identify known low-abundance biomarkers as a result of the limited dynamic range of mass spectrometry (two to three orders of magnitude) compared with the large dynamic range of protein concentrations in biologic fluids (11 to 12 orders of magnitude for serum). In addition, the number of peptides generated in such methods vastly overwhelms the resolution capacity of mass spectrometers, requiring extensive sample clean-up (e.g., affinity tag, retentate chromatography and/or high-performance liquid chromatography) before mass spectrometry analysis. Baiting and affinity pre-enrichment strategies, which overcome the dynamic range and sample complexity issues of global proteomic strategies, are very difficult to couple to mass spectrometry. This is due to the fact that it is nearly impossible to sort target peptides from those of the bait since there will be many cases of isobaric peptides. IDBEST? (Target Discovery, Inc.) is a new tagging strategy that enables such pre-enrichment of specific proteins or protein classes as the resulting tagged peptides are distinguishable from those of the bait by a mass defect shift of approximately 0.1 atomic mass units. The special characteristics of these tags allow: resolution of tagged peptides from untagged peptides through incorporation of a mass defect element; high-precision quantitation of up- and downregulation by using stable isotope versions of the same tag; and potential analysis of protein isoforms through more complete peptide coverage from the proteins of interest.  相似文献   

5.
Oxidation of thiol proteins, which results in conversion of cysteine residues to cysteine sulfenic, sulfinic or sulfonic acids, is an important posttranslational control of protein function in cells. To facilitate the analysis of this process with MALDI‐MS, we have developed a method for selective enrichment and identification of peptides containing cysteine sulfonic acid (sulfopeptides) in tryptic digests of proteins based on ionic affinity capture using polyarginine‐coated nanodiamonds as high‐affinity probes. The method was applied to selectively concentrate sulfopeptides from either a highly dilute solution or a complex peptide mixture in which the abundance of the sulfonated analyte is as low as 0.02%. The polyarginine‐coated probes exhibit a higher affinity for peptides containing multiple sulfonic acids than peptides containing single sulfonic acid. The limit of the detection is in the femtomole range, with the MALDI‐TOF mass spectrometer operating in the negative ion mode. The results show that the new approach has good specificity even in the presence of phosphopeptides. An application of this method for selective enrichment and structural identification of sulfopeptides is demonstrated with the tryptic digests of performic‐acid‐oxidized BSA.  相似文献   

6.
The deciphering of the relationship between function and exact chemical composition of a defined protein species in the context of the proteome is one of the major challenges in proteomics and molecular cell physiology. In the Special Issue of Amino Acids about the analysis of protein species current approaches are reviewed and new methods described focusing on the investigation of protein species. On the basis of the articles in this Special Issue it can be summarized that first important and promising steps towards the comprehensive analysis of protein species have been done. It is already possible to obtain full (100%) sequence coverage of proteins by mass spectrometry, if the amount of proteins available for their analysis allows their proteolytic degradation by more than one protease and the subsequent mass spectrometric analysis of the resulting peptides. Employing affinity chromatography helps to analyse proteins with defined post-translational modifications thus opening a targeted view on e.g. the phosphoproteome. In the future the aim to identify the exact chemical composition including not one but every posttranslational modification and complete sequence coverage on the protein species level should be achievable with further progress in sample preparation techniques, especially concerning separation techniques on the protein level, mass spectrometry and algorithms for mass spectrometric data processing. For determining the function of defined protein species a closer cooperation between cell biologists and proteomics experts is desirable.  相似文献   

7.
Exploring the proteome of Plasmodium   总被引:2,自引:0,他引:2  
With the entire genomic sequence of several species of Plasmodium soon to be available, researchers are now focusing on methods to study gene and protein expression at the whole organism level. Traditional methods of characterising and identifying large numbers of proteins from a complex protein mixture have relied predominantly on two-dimensional gel electrophoresis combined with N-terminal sequencing or mass spectrometry of individually prepared proteins. New proteomics methods are now available that are based on resolving small peptides derived from complex protein mixtures by high-resolution liquid chromatography and directly identifying them by tandem mass spectrometry (LC/LC/MS/MS) and sophisticated computer search algorithms against whole genome sequence databases. These newer proteomic methods have the potential to accelerate the reproducible identification of large numbers of proteins from various life cycle stages of Plasmodium and may help to better understand parasite biology and lead to the identification of new targets of vaccines and drugs.  相似文献   

8.
The early applications of microarrays and detection technologies have been centered on DNA-based applications. The application of array technologies to proteomics is now occurring at a rapid rate. Numerous researchers have begun to develop technologies for the creation of microarrays of protein-based screening tools. The stability of antibody molecules when bound to surfaces has made antibody arrays a starting point for proteomic microarray technology. To minimize disadvantages due to size and availability, some researchers have instead opted for antibody fragments, antibody mimics or phage display technology to create libraries for protein chips. Even further removed from antibodies are libraries of aptamers, which are single-stranded oligonucleotides that express high affinity for protein molecules. A variation on the theme of protein chips arrayed with antibody mimics or other protein capture ligand is that of affinity MS where the protein chips are directly placed in a mass spectrometer for detection. Other approaches include the creation of intact protein microarrays directly on glass slides or chips. Although many of the proteins may likely be denatured, successful screening has been demonstrated. The investigation of protein-protein interactions has formed the basis of a technique called yeast two-hybrid. In this method, yeast "bait" proteins can be probed with other yeast "prey" proteins fused to DNA binding domains. Although the current interpretation of protein arrays emphasizes microarray grids of proteins or ligands on glass slides or chips, 2-D gels are technically macroarrays of authentic proteins. In an innovative departure from the traditional concept of protein chips, some researchers are implementing microfluidic printing of arrayed chemistries on individual protein spots blotted onto membranes. Other researchers are using in-jet printing technology to create protein microarrays on chips. The rapid growth of proteomics and the active climate for new technology is driving a new generation of companies and academic efforts that are developing novel protein microarray techniques for the future.  相似文献   

9.
Mass spectrometry has proved to be an important tool for protein biomarker discovery, identification and characterization. However, global proteomic profiling strategies often fail to identify known low-abundance biomarkers as a result of the limited dynamic range of mass spectrometry (two to three orders of magnitude) compared with the large dynamic range of protein concentrations in biologic fluids (11 to 12 orders of magnitude for serum). In addition, the number of peptides generated in such methods vastly overwhelms the resolution capacity of mass spectrometers, requiring extensive sample clean-up (e.g., affinity tag, retentate chromatography and/or high-performance liquid chromatography) before mass spectrometry analysis. Baiting and affinity pre-enrichment strategies, which overcome the dynamic range and sample complexity issues of global proteomic strategies, are very difficult to couple to mass spectrometry. This is due to the fact that it is nearly impossible to sort target peptides from those of the bait since there will be many cases of isobaric peptides. IDBEST (Target Discovery, Inc.) is a new tagging strategy that enables such pre-enrichment of specific proteins or protein classes as the resulting tagged peptides are distinguishable from those of the bait by a mass defect shift of approximately 0.1 atomic mass units. The special characteristics of these tags allow: resolution of tagged peptides from untagged peptides through incorporation of a mass defect element; high-precision quantitation of up- and downregulation by using stable isotope versions of the same tag; and potential analysis of protein isoforms through more complete peptide coverage from the proteins of interest.  相似文献   

10.
There is a great need for quantitative assays in measuring proteins. Traditional sandwich immunoassays, largely considered the gold standard in quantitation, are associated with a high cost, long lead time, and are fraught with drawbacks (e.g. heterophilic antibodies, autoantibody interference, ''hook-effect'').1 An alternative technique is affinity enrichment of peptides coupled with quantitative mass spectrometry, commonly referred to as SISCAPA (Stable Isotope Standards and Capture by Anti-Peptide Antibodies).2 In this technique, affinity enrichment of peptides with stable isotope dilution and detection by selected/multiple reaction monitoring mass spectrometry (SRM/MRM-MS) provides quantitative measurement of peptides as surrogates for their respective proteins. SRM/MRM-MS is well established for accurate quantitation of small molecules 3, 4 and more recently has been adapted to measure the concentrations of proteins in plasma and cell lysates.5-7 To achieve quantitation of proteins, these larger molecules are digested to component peptides using an enzyme such as trypsin. One or more selected peptides whose sequence is unique to the target protein in that species (i.e. "proteotypic" peptides) are then enriched from the sample using anti-peptide antibodies and measured as quantitative stoichiometric surrogates for protein concentration in the sample. Hence, coupled to stable isotope dilution (SID) methods (i.e. a spiked-in stable isotope labeled peptide standard), SRM/MRM can be used to measure concentrations of proteotypic peptides as surrogates for quantification of proteins in complex biological matrices. The assays have several advantages compared to traditional immunoassays. The reagents are relatively less expensive to generate, the specificity for the analyte is excellent, the assays can be highly multiplexed, enrichment can be performed from neat plasma (no depletion required), and the technique is amenable to a wide array of proteins or modifications of interest.8-13 In this video we demonstrate the basic protocol as adapted to a magnetic bead platform.  相似文献   

11.

Introduction

With the rapid development of mass spectrometry-based technologies such as multiple reaction monitoring and heavy-isotope-labeled-peptide standards, quantitative analysis of biomarker proteins using mass spectrometry is rapidly progressing toward detection of target proteins/peptides from clinical samples. Proteotypic peptides are a few peptides that are repeatedly and consistently identified from a protein in a mixture and are used for quantitative analysis of the protein in a complex biological sample by mass spectrometry.

Materials and Methods

Using mass spectrometry, we identified peptide sequences and provided a list of tryptic peptides and glycopeptides as proteotypic peptides from five clinically used tumor markers, including prostate-specific antigen, carcinoembryonic antigen, Her-2, human chorionic gonadotropin, and CA125.

Conclusion

These proteotypic peptides have potential for targeted detection as well as heavy-isotope-peptide standards for quantitative analysis of marker proteins in clinical specimens using a highly specific, sensitive, and high-throughout mass spectrometry-based analysis method.  相似文献   

12.
13.
Trinkle-Mulcahy L 《Proteomics》2012,12(10):1623-1638
Label-based quantitative mass spectrometry analysis of affinity purified complexes, with its built-in negative controls and relative ease of use, is an increasingly popular choice for defining protein-protein interactions and multiprotein complexes. This approach, which differentially labels proteins/peptides from two or more populations and combines them prior to analysis, permits direct comparison of a protein pulldown (e.g. affinity purified tagged protein) to that of a control pulldown (e.g. affinity purified tag alone) in a single mass spectrometry (MS) run, thus avoiding the variability inherent in separate runs. The use of quantitative techniques has been driven in large part by significant improvements in the resolution and sensitivity of high-end mass spectrometers. Importantly, the availability of commercial reagents and open source identification/quantification software has made these powerful techniques accessible to nonspecialists. Benefits and drawbacks of the most popular labeling-based approaches are discussed here, and key steps/strategies for the use of labeling in quantitative immunoprecipitation experiments detailed.  相似文献   

14.
Understanding the progression of periodontal tissue destruction is at the forefront of periodontal research. The authors aimed to capture the dynamics of gingival tissue proteome during the initiation and progression of experimental (ligature‐induced) periodontitis in mice. Pressure cycling technology (PCT), a recently developed platform that uses ultra‐high pressure to disrupt tissues, is utilized to achieve efficient and reproducible protein extraction from ultra‐small amounts of gingival tissues in combination with liquid chromatography‐tandem mass spectrometry (MS). The MS data are processed using Progenesis QI and the regulated proteins are subjected to METACORE, STRING, and WebGestalt for functional enrichment analysis. A total of 1614 proteins with ≥2 peptides are quantified with an estimated protein false discovery rate of 0.06%. Unsupervised clustering analysis shows that the gingival tissue protein abundance is mainly dependent on the periodontitis progression stage. Gene ontology enrichment analysis reveals an overrepresentation in innate immune regulation (e.g., neutrophil‐mediated immunity and antimicrobial peptides), signal transduction (e.g., integrin signaling), and homeostasis processes (e.g., platelet activation and aggregation). In conclusion, a PCT‐assisted label‐free quantitative proteomics workflow that allowed cataloging the deepest gingival tissue proteome on a rapid timescale and provided novel mechanistic insights into host perturbation during periodontitis progression is applied.  相似文献   

15.
Zooming in: fractionation strategies in proteomics   总被引:5,自引:0,他引:5  
Stasyk T  Huber LA 《Proteomics》2004,4(12):3704-3716
The recent development of mass spectrometry, i.e., high sensitivity, automation of protein identification and some post-translational modifications (PTMs) significantly increased the number of large-scale proteomics projects. However, there are still considerable limitations as none of the currently available proteomics techniques allows the analysis of an entire proteome in a single step procedure. On the other hand, there are several successful studies analyzing well defined groups of proteins, e.g., proteins of purified organelles, membrane microdomains or isolated proteins with certain PTMs. Coupling of advanced separation methodologies (different prefractionation strategies, such as subcellular fractionation, affinity purification, fractionation of proteins and peptides according to their physicochemical properties) to highly sensitive mass spectrometers provides powerful means to detect and analyze dynamic changes of low abundant regulatory proteins in eukaryotic cells on the subcellular level. This review summarizes and discusses recent strategies in proteomics approaches where different fractionation strategies were successfully applied.  相似文献   

16.
We have developed a method to isolate and enhance the detection of phosphopeptides using liquid chromatography (LC)/mass spectrometry on a tryptic-digested protein sample. The method uses an on-line two-dimensional chromatography approach that consists of strong cation exchange (SCX) followed by reversed-phase (RP) chromatography with mass spectrometric detection. At pH 2.6 or lower, tryptic phosphopeptides are not retained during the first-dimension SCX chromatography step. Thus the capture of these peptides in the flow-through by the second-dimension RP trap can dramatically reduce the complexity of the phosphopeptide chromatography, resulting in little or no suppression of the signal often caused by the coeluting nonphosphorylated peptides. The method provides higher phosphopeptide recovery and less nonspecific biding of acidic peptides than the commonly used enrichment methods, such as immobilized metal affinity chromatography. Since the widely adopted multidimensional LC strategy in shotgun proteomics uses a similar SCX-RP approach, the method can be adapted to detect and characterize phosphopeptides from a complex mixture in a single experiment. Limitations of the method are also discussed.  相似文献   

17.
On-target affinity capture, enrichment and purification of biomolecules improve detection of specific analytes from complex biological samples in matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis. In this paper, we report a simple method for preparation of a self-assembled nitrilotriacetic acid (NTA) monolayer on gold surface which can be used as a MALDI-TOF-MS sample target specifically for recombinant oligohistidine-tagged proteins/peptides and phosphorylated peptides. The NTA functional groups are immobilized to the gold surface via the linkage of 1,8-octanedithiol which forms a self-assembled monolayer on gold. Characterization by X-ray photoelectron spectroscopy and MALDI analysis of the modified surface are described. The chemically modified surface shows strong affinity toward the analytes of interest, which allows effective removal of the common interferences, e.g. salts and detergents, and therefore leads to improved signal/noise ratio and detection limit. The use of the modified surface simplifies the sample preparation for MALDI analysis of these targeted analytes.  相似文献   

18.
The growing importance of mass spectrometry for the identification and characterization of bacterial protein toxins is a consequence of the improved sensitivity and specificity of mass spectrometry-based techniques, especially when these techniques are combined with affinity methods. Here we describe a novel method based on the use of immunoaffinity capture and matrix-assisted laser desorption ionization-time of flight mass spectrometry for selective purification and detection of staphylococcal enterotoxin B (SEB). SEB is a potent bacterial protein toxin responsible for food poisoning, as well as a potential biological warfare agent. Unambiguous detection of SEB at low-nanogram levels in complex matrices is thus an important objective. In this work, an affinity molecular probe was prepared by immobilizing anti-SEB antibody on the surface of para-toluene-sulfonyl-functionalized monodisperse magnetic particles and used to selectively isolate SEB. Immobilization and affinity capture procedures were optimized to maximize the density of anti-SEB immunoglobulin G and the amount of captured SEB, respectively, on the surface of magnetic beads. SEB could be detected directly "on beads" by placing the molecular probe on the matrix-assisted laser desorption ionization target plate or, alternatively, "off beads" after its acidic elution. Application of this method to complex biological matrices was demonstrated by selective detection of SEB present in different matrices, such as cultivation media of Staphylococcus aureus strains and raw milk samples.  相似文献   

19.
We described an efficient protocol to strongly enrich phosphoproteins from mixtures of total cellular proteins using homemade, recyclable Fe(III)-affinity columns. An integral feature of the method is the use of a detergent cocktail that allows use of different pHs for total protein extraction (pH 6.8) and for subsequent affinity capture of phosphoproteins (pH 3.4). Affinity captured proteins from rat fibroblasts were fractionated on 2D gels and random selection was identified by mass spectrometry. More than 85% of identified proteins were previously known to be phosphorylated. The specificity of the method was further validated by isolating proteins from (32)P labeled cells. Our comparison of the clusters of acidic residues in the captured proteins with acidic clusters in proteins of the rat genome indicates that affinity for phosphate groups dominates over adsorption of proteins with acidic clusters.  相似文献   

20.
This report describes an integrated and modular microsystem providing rapid analyses of trace-level tryptic digests for proteomics applications. This microsystem includes an autosampler, a microfabricated device comprising a large channel (2.4 microl total volume), an array of separation channels, together with a low dead volume enabling the interface to nanoelectrospray mass spectrometry. The large channel of this microfluidic device provides a convenient platform to integrate C(18) reverse phase packing or other type of affinity media such as immobilized antibodies or immobilized metal affinity chromatography beads thus enabling affinity selection of target peptides prior to electrophoretic separation and mass spectrometry analyses on a quadrupole/time-of-flight instrument. Sequential injection, preconcentration, and separation of peptide standards and tryptic digests are achieved with a throughput of up to 12 samples/per h and a concentration detection limit of approximately 5 nM (25 fmol on chip). Replicate injections of peptide mixtures indicated that reproducibility of migration time was 1.2-1.8%, whereas relative standard deviation ranging from 9.2 to 11.8% are observed on peak heights. The application of this device for trace-level protein identification is demonstrated for two-dimensional gel spots obtained from extracts of human prostatic cancer cells (LNCap) using both peptide mass-fingerprint data base searching and on-line tandem mass spectrometry. Enrichment of target peptides prior to mass spectral analyses is achieved using c-myc-specific antibodies immobilized on protein G-Sepharose beads and facilitates the identification of antigenic peptides spiked at a level of 20 ng/ml in human plasma. Affinity selection is also demonstrated for gel-isolated protein bands where tryptic phosphopeptides are captured on immobilized metal affinity chromatography beads and subsequently separated and characterized on this microfluidic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号