首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

2.
The unique fruiting structures of the closely related, principally Mexican, monotypic genera Gongylocarpus and Burragea (Onagraceae) compelled a detailed anatomical and cytological investigation of these plants which led to the conclusion that they should be included in a single genus, Gongylocarpus. Gongylocarpus fruticulosus (Burragea), endemic to two adjacent islands off the west coast of Baja California, is divided into two subspecies, subsp. fruticulosus and subsp. glaber. The vegetative and floral anatomy, including wood anatomy, of both species is described. The fruits of these two species grow into the stem by meristematic activity during the course of ontogeny, the ovaries in the mature flower being superficial and sessile in the leaf axil. There is no pedicel associated with the flower, but only a branch gap. Meristematic tissue at the base of the locules divides rapidly at a relatively late ontogenetic stage, the ovaries growing downward into the stem and crushing the pith. The mature, heavily sclerenchymatous fruits are located wholly within the stem, and in G. fruticulosus they are aggregated into long chains. Both species have a gametic chromosome number of n = 11, a characteristic otherwise unknown in the tribe Onagreae but shared with other generalized groups in the family. Taken together with other features, this suggests a primitive position within the tribe for Gongylocarpus.  相似文献   

3.
4.
Previous phylogenetic analyses of the tribe Phyllotini, one of the largest components of the subfamily Sigmodontinae, have been based on a single source of evidence. In particular, morphological analyses were largely based on craniodental data, almost neglecting the potential phylogenetic information present in the postcranium. Despite the significant advances made in relation to the knowledge of phyllotine phylogeny in recent times, there are several unsolved issues that highlight the importance of a phylogenetic analysis that integrates multiple sources of evidence, including previously considered sources as well as new sources of data. We present here the first combined phylogenetic analysis (morphological and molecular) of phyllotines, which includes the widest taxon and character sampling to date. Our dataset includes 164 morphological characters, of which 83 are postcranial characters, plus 3561 molecular characters, scored for 52 species from 34 genera of Oryzomyalia. In this study 75 postcranial characters not previously considered in this group are thoroughly described, and their utility for solving the relationships within Phyllotini is evaluated by means of different complementary analyses. Phyllotini was retrieved as a monophyletic clade in the combined analysis, with a composition that matches that obtained in most other recent analyses. All genera of phyllotines were monophyletic and show high support values. Abrotrichini, Akodontini and Oryzomyini were also monophyletic. The inclusion of postcranial data appears to be of limited utility to solve the phylogenetic relationships within Phyllotini.  相似文献   

5.
We have conducted the first comprehensive molecular phylogeny of the tribe Cichlasomatini including all valid genera as well as important species of questionable generic status. To recover the relationships among cichlasomatine genera and to test their monophyly we analyzed sequences from two mitochondrial (16S rRNA, cytochrome b) and one nuclear marker (first intron of S7 ribosomal gene) totalling 2236 bp. Our data suggest that all genera except Aequidens are monophyletic, but we found important disagreements between the traditional morphological relationships and the phylogeny based on our molecular data. Our analyses support the following conclusions: (a) Aequidens sensu stricto is paraphyletic, including also Cichlasoma (CA clade); (b) Krobia is not closely related to Bujurquina and includes also the Guyanan Aequidens species A. potaroensis and probably A. paloemeuensis (KA clade). (c) Bujurquina and Tahuantinsuyoa are sister groups, closely related to an undescribed genus formed by the 'Aequidens'pulcher-'Aequidens'rivulatus groups (BTA clade). (d) Nannacara (plus Ivanacara) and Cleithracara are found as sister groups (NIC clade). Acaronia is most probably the sister group of the BTA clade, and Laetacara may be the sister group of this clade. Estimation of divergence times suggests that the divergence of Cichlasomatini started around 44Mya with the vicariance between coastal rivers of the Guyanas (KA and NIC clades) and remaining cis-andean South America, followed by evolution of the Acaronia-Laetacara-BTA clade in Western Amazon, and the CA clade in the Eastern Amazon. Vicariant divergence has played importantly in evolution of cichlasomatine genera, with dispersal limited to later range extension of species within genera.  相似文献   

6.
Abstract.  Nematinae is one of the largest subfamilies in the sawfly family Tenthredinidae, but internal relationships are unknown in the absence of any formal phylogenetic analysis. To understand the internal phylogeny of Nematinae, we sequenced a portion of the mitochondrial cytochrome oxidase I gene and the nuclear elongation factor-1α gene from thirteen outgroup taxa and sixty-eight nematine species, the ingroup taxa of which represent all major genera and subgenera within the subfamily. Maximum parsimony and Bayesian phylogenetic analyses of the DNA sequence data show that: (1) Nematinae are monophyletic in a broad sense which includes Hoplocampa , Susana and the tribe Cladiini, which have been classified often into separate subfamilies; together with Craterocercus , these taxa form a paraphyletic basal grade with respect to the remaining Nematinae, but among-group relationships within the grade remain weakly resolved; (2) the remainder of the ingroup, Nematinae s. str, is monophyletic in all combined-data analyses; (3) within Nematinae s. str, the 'Higher' Nematinae is divided into three groups, Mesoneura and the large tribes Nematini and Pristiphorini; (4) although the traditional classifications at the tribal level are largely upheld, some of the largest tribes and genera are obviously para- or polyphyletic; (5) according to rate-smoothed phylogenies dated with two fossil calibration points, Nematinae originated 50–120 million years ago. In addition, the results from all Bayesian analyses provide strong and consistent support for the monophyly of Tenthredinidae, which has been difficult to demonstrate in previous parsimony analyses of morphological and molecular data.  相似文献   

7.
The D2 variable region of 28S ribosomal RNA was sequenced from ethanol specimens or obtained from the literature to provide the first phylogenetie reconstruction of the subfamily Euphorinae (Hymenoptera;Braconidae). Phylogenetic relationships were established by comparing the results using two different methods (distance-based neighbor-joining, NJ; and maximum parsimony, MP) and three different outgroups. The monophyly of the Euphorinae is well supported by all trees generated from molecular data. All phylogenetic reconstructions yielded trees with very similar topologies that only partially resolved the morphologically defined tribes and the relationships within the subfamily. We found no evidence for the monophyletic natures of the tribes Euphorinl, Dinocampini,Perilitini, Syntretini, Comsophorini and Centisitini, but we did find some evidence for the tribes Meteorini and Microctonini. The monophyletic nature of the tribe Meteodnl was well-supported in all trees. We also found the clade containing the LecythodeUa,Microctonus, Orionis and Streblocera to be a monophyletic group, which corresponded to the tribe Microtonini, with Orionis transferred from the tribe Eupholini into Microtonini.Among the genera of Euphorini our results showed strong support for a paraphyletic nature of this group, which can be roughly divided into two clades, one consisting of Aridelus Wesmaelia, the other of Leiophron Peristenus, suggesting both of which may be given tribal rank. The placement of the genus Chrysopophorus is largely uncertain. Two clades,Dinocampus Perilitus and Cosmophorus Rhopalophorus, were constantly resolved in our analyses, with 42-96 and 97-100 bootstrap value support, respectively, suggesting that both of them form monophyletic groups. For members of the Centistini, Pygostolus may be removed and included in Microctonini or other relative tribe.  相似文献   

8.
Generic relationships within Episcieae were assessed using ITS and ndhF sequences. Previous analyses of this tribe have focussed only on ndhF data and have excluded two genera, Rhoogeton and Oerstedina, which are included in this analysis. Data were analyzed using both parsimony and maximum-likelihood methods. Results from partition homogeneity tests imply that the two data sets are significantly incongruent, but when Rhoogeton is removed from the analysis, the data sets are not significantly different. The combined data sets reveal greater strength of relationships within the tribe with the exception of the position of Rhoogeton. Poorly or unresolved relationships based exclusively on ndhF data are more fully resolved with ITS data. These resolved clades include the monophyly of the genera Columnea and Paradrymonia and the sister-group relationship of Nematanthus and Codonanthe. A closer affinity between Neomortonia nummularia and N. rosea than has previously been seen is apparent from these data, although these two species are not monophyletic in any tree. Lastly, Capanea appears to be a member of Gloxinieae, although C. grandiflora remains within Episcieae. Evolution of fruit type, epiphytic habit, and presence of tubers is re-examined with the new data presented here.  相似文献   

9.
Despite its large size (about 700 species), the australy-centred sedge tribe Schoeneae has received little explicit phylogenetic study, especially using molecular data. As a result, generic relationships are poorly understood, and even the monophyly of the tribe is open to question. In this study, plastid DNA sequences (rbcL, trnL-trnF, and rps16) drawn from a broad array of Schoeneae are analysed using Bayesian and parsimony-based approaches to infer a framework phylogeny for the tribe. Both analytical methods broadly support the monophyly of Schoeneae, Bayesian methods doing so with good support. Within the schoenoid clade, there is strong support for a series of monophyletic generic groupings whose interrelationships are unclear. These lineages form a large polytomy at the base of Schoeneae that may be indicative of past radiation, probably following the fragmentation of Gondwana. Most of these lineages contain both African and non-African members, suggesting a history of intercontinental dispersal. The results of this study clearly identify the relationships of the African-endemic schoenoid genera and demonstrate that the African-Australasian genus Tetraria, like Costularia, is polyphyletic. This pattern is morphologically consistent and suggests that these genera require realignment.  相似文献   

10.
Gaura (Onagraceae: Onagreae) is a small North American genus of 21 species consisting mostly of night-blooming, moth-pollinated annuals and perennials. The current infrageneric classification based on differences in habit, floral symmetry, and fruit morphology recognizes eight sections within the genus. We examine the phylogenetic relationships of all 21 species of Gaura using DNA sequence data from the internal transcribed spacer region (ITS), the external transcribed spacer region (ETS), and the plastid trnL-F region. Combined analysis of these regions indicate Gaura is monophyletic only if it includes Stenosiphon, a monotypic genus comprised of S. linifolius. Within Gaura, our studies indicate that sections Gauridium, Schizocarya, Campogaura, Stipogaura, Xenogaura, and Gaura are monophyletic, but sections Xerogaura and Pterogaura are not and should be reevaluated. In addition, molecular data provide support for the hypothesis that G. sinuata and G. drummondii arose via interspecific hybridization followed by genome doubling; their influence on phylogenetic reconstruction is discussed.  相似文献   

11.
The Labeonini (sensu Rainboth, 1991) is a tribe of the subfamily Cyprininae, the largest subfamily of Cypriniformes. With around 400 species in 34 genera, this tribe is widely distributed in the freshwaters of tropical Africa and Asia. Most species are adapted to fast-flowing streams and rivers, and exhibit unique morphological modifications associated with their lips and other structures around the mouth. The monophyly of this tribe has been tested and generally accepted in previous morphological and molecular studies. The major objectives of this study were to reconstruct the phylogenetic relationships within the tribe Labeonini, test its monophyly and explore the taxonomic subdivisions, intrarelationships and biogeography of the group. The value of the morphological characters associated with the lips and other associated structures in the taxonomic classification of labeonins was also discussed. Nucleotide sequences (3867 bp) of four unlinked nuclear loci were obtained from 51 species in 18 Labeonini genera from throughout the range of the tribe. Maximum parsimony, partitioned maximum likelihood and partitioned Bayesian analyses were used for phylogenetic inference from combined and separate gene data sets. Based on our results, the monophyly of Labeonini was well supported. Two major clades could be recovered within the tribe. Three subclades could further be recognized from the first clade. These clades/subclades are not consistent with groupings of any of previous workers using either morphological or molecular characters for phylogenetic inference. Only five currently recognized genera in this analysis are monophyletic. The similarity between some lips and associated structures (e.g. suctorial discs) of labeonins may due to convergence or parallelism instead of common ancestry. Labeonins of Southeast Asia, India and China are closely related to each other; the multiple clades of African taxa do not form a single monophyletic group, indicating multiple, independent dispersal events of labeonins into Africa from Asia.  相似文献   

12.
The phylogenetic relationships within the fungus gnat subfamily Mycetophilinae (Diptera) are addressed using a combined morphological and molecular approach. Twenty-four species, representing nine genera of the tribe Mycetophilini and 15 genera of the tribe Exechiini, were included in the study. Analyses include nucleotide sequences of mitochondrial (cytochrome oxidase I and 16S), and nuclear (18S and 28S rDNA) genes, in addition to 65 morphological characters. A combined parsimony analysis, including all characters, supports the monophyly of the subfamily Mycetophilinae and two of its tribes, Exechiini and Mycetophilini. There is also statistical support for a Mycetophila- group and a Phronia- group within the tribe Mycetophilini. The Phronia- group includes the genera Phronia , Macrobrachius and Trichonta . The Mycetophila- group includes the genera Mycetophila , Epicypta , Platurocypta , Sceptonia and Zygomyia . A Bayesian analysis based on the nucleotide sequences alone also support these clades within Mycetophilini except for the position of Dynatosoma which is recovered as the sister taxon to the Phronia- group. A somewhat different pattern, however, is observed for the tribe Exechiini – neither molecular data nor the combined data set support unambiguously any intergeneric relationships within Exechiini.  相似文献   

13.
Abstract. The Dolichopodidae is a species‐rich dipteran group with almost 7000 described species. The monophyly of the subfamilies and their relationships remain largely unknown because the polarities of key morphological characters are unclear and molecular data are available only for 9 of the 19 proposed subfamilies. Here we test whether molecular data from two nuclear (18S, 28S) and four mitochondrial (12S, 16S, Cytb, COI) genes can resolve the higher‐level relationships within the family. Our study is based on 76 Oriental species from 12 dolichopodid subfamilies and uses eight species of Empididae and Hybotidae as outgroups. Parsimony and likelihood analyses confirm the monophyly of the Dolichopodidae, as well as the monophyly of five of the ten subfamilies represented by more than two species [Sympycninae, Sciapodinae, Dolichopodinae, Hydrophorinae (excluding tribe Aphrosylini), Neurigoninae]. There is strong support for restoring the tribe Aphrosylini as a separate subfamily Aphrosylinae. The monophyly of Medeterinae, Peloropeodinae and Diaphorinae is dependent on which tree reconstruction technique is used, how indels are coded, and whether the fast‐evolving sites are excluded. Overall, we find that our sample of Oriental species is largely compatible with the subfamily concepts that were developed for the northern temperate fauna. However, our data provide little support for relationships between the subfamilies. Branch lengths, saturation, and distance plots suggest that this is probably the result of the rapid origin of dolichopodid subfamilies over a relatively short time. We find that genera that are difficult to place into subfamilies based on morphological characters are generally also difficult to place using molecular data. We predict that a dense, balanced taxon sample and protein‐encoding nuclear genes will be needed to resolve the higher‐level relationships in the Dolichopodidae.  相似文献   

14.
The phylogenetic relationships within the fungus gnat tribe Exechiini have been left unattended for many years. Recent studies have not shed much light on the intergeneric relationship within the tribe. Here the first attempt to resolve the phylogeny of the tribe Exechiini using molecular markers is presented. The nuclear 18S and the mitochondrial 16S, and cytochrome oxidase subunit I (COI) genes were successfully sequenced for 20 species representing 15 Exechiini genera and five outgroup genera. Bayesian, maximum parsimony and maximum likelihood analyses revealed basically congruent tree topologies and the monophyly of Exechiini, including the genus Cordyla , is confirmed. The molecular data corroborate previous morphological studies in several aspects. Cordyla is found in a basal clade together with Brachypeza , Pseudorymosia and Stigmatomeria . The splitting of the genera Allodiopsis s.l. and Brevicornu s.l. as well as the sistergroup relationship of Exechia and Exechiopsis is also supported. The limited phylogenetic information provided by morphological characters is mirrored in the limited resolution of the molecular markers used in this study. Short internal and long-terminal branches obtained may indicate a rapid radiation of the Exechiini genera during a short evolutionary period.  相似文献   

15.

Background and Aims

The Neotropical tribe Trimezieae are taxonomically difficult. They are generally characterized by the absence of the features used to delimit their sister group Tigridieae. Delimiting the four genera that make up Trimezieae is also problematic. Previous family-level phylogenetic analyses have not examined the monophyly of the tribe or relationships within it. Reconstructing the phylogeny of Trimezieae will allow us to evaluate the status of the tribe and genera and to examine the suitability of characters traditionally used in their taxonomy.

Methods

Maximum parsimony and Bayesian phylogenetic analyses are presented for 37 species representing all four genera of Trimezieae. Analyses were based on nrITS sequences and a combined plastid dataset. Ancestral character state reconstructions were used to investigate the evolution of ten morphological characters previously considered taxonomically useful.

Key Results

Analyses of nrITS and plastid datasets strongly support the monophyly of Trimezieae and recover four principal clades with varying levels of support; these clades do not correspond to the currently recognized genera. Relationships within the four clades are not consistently resolved, although the conflicting resolutions are not strongly supported in individual analyses. Ancestral character state reconstructions suggest considerable homoplasy, especially in the floral characters used to delimit Pseudotrimezia.

Conclusions

The results strongly support recognition of Trimezieae as a tribe but suggest that both generic- and species-level taxonomy need revision. Further molecular analyses, with increased sampling of taxa and markers, are needed to support any revision. Such analyses will help determine the causes of discordance between the plastid and nuclear data and provide a framework for identifying potential morphological synapomorphies for infra-tribal groups. The results also suggest Trimezieae provide a promising model for evolutionary research.  相似文献   

16.
We present a molecular systematic investigation of relationships among family-group taxa of Membracidae, comprising nearly 3.5 kb of nucleotide sequence data from the nuclear genes elongation factor-1alpha (EF-1alpha: 958 bp) and 28S ribosomal DNA (28S rDNA: 2363 bp); data partitions are analyzed separately and in combination for 79 taxa. Analysis of the combined sequence data provided a better-resolved and more robust hypothesis of membracid phylogeny than did separate analyses of the individual genes. Results support the monophyly of the family Membracidae and indicate the presence of two major lineages (Centrotinae + Stegaspidinae + Centrodontinae and Darninae + Membracinae + Smiliinae). Within Membracidae, molecular data support the following assertions: (1) the previously unplaced genera Antillotolania and Deiroderes form a monophyletic group with Microcentrini; (2) Centrodontini and Nessorhinini are monophyletic clades that arise independently from within the Centrotinae; (3) Centrotinae is paraphyletic with respect to Centrodontinae; (4) the subfamily Membracinae is monophyletic and possibly allied with the darnine tribe Cymbomorphini; (5) the subfamily Darninae is paraphyletic; (6) the subfamily Smiliinae is paraphyletic, with molecular evidence indicating the exclusion of Micrutalini and perhaps Acutalini and Ceresini; and (7) Membracidae arose and diversified in the New World with multiple subsequent colonizations of the Old World. Our phylogenetic results suggest that morphology-based classifications of the Membracidae need to be reevaluated in light of emerging molecular evidence.  相似文献   

17.
18.
The Menispermaceae family contains ca. 72 genera with 450 species that are almost entirely tropical. Its phylogeny at the tribal level has never been examined using molecular data. Here we used DNA sequences of the chloroplast matK gene and trnL-F regions, and the nuclear ITS region to study the delimitation and position of the tribe Menispermeae within the family and its subtribal monophyletic groups. Family-wide phylogenetic analyses of the chloroplast data produced two strongly supported clades. The first clade contains two subclades: Coscinieae including Arcangelisia and Anamirta, and Tinosporeae sensu lato including Fibraureae, supported by morphological characters, such as traits of the cotyledon, stylar scar and embryo. The second clade consists of the tribes Menispermeae sensu DC. and Tiliacoreae Miers. All our analyses surprisingly recognized that tribe Menispermeae is not monophyletic unless tribe Tiliacoreae is included, suggesting that characters of cotyledon and stylar scar are very important for the infrafamilial classification, and that endosperm presence vs. absence was over-emphasized in traditionally tribal division of the family. Our topologies indicate a secondary loss of endosperm. The monophyly of two subtribes of the tribe Menispermeae, Stephaniinae and Cissampelinae, is supported by the cpDNA and ITS data, as well as by morphological characters, including aperture types and shapes, and colpal membrane features of pollen grains, and sepal number of male flowers. The Cocculinae was recognized as a paraphyletic group containing the remaining genera of the tribe Menispermeae.  相似文献   

19.
Xylonagra arborea is a monotypic genus of the tribe Onagreae of the Onagraceae. The species is restricted to the desert regions of central Baja California in western Mexico. Four flavonol glycosides, myricetin 3-O-glucoside, myricetin 3-O-rhamnoside, quercetin 3-O-glucoside and quercetin 3-O-rhamnoside were found to occur in methanolic leaf extracts of each of the populations sampled. The data are consistent with earlier investigations of leaf flavonoids in the Onagreae and suggest interesting changes in B-ring hydroxylation patterns within the tribe.  相似文献   

20.
Heterogaura is a monotypic genus of the tribe Onagreae of the Onagraceae. It is endemic to south western Oregon and California. Four flavonol glycosides, kaempferol 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin 3-O-rhamnoglucoside and myricetin 3-O-glucoside, were found to occur in methanolic leaf extracts of each of the populations sampled. The presence of only flavonols is consistent with flavonoid analyses from other genera of the Onagreae, including Clarkia, the closest relative of Heterogaura.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号