首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   5篇
  2019年   2篇
  2015年   2篇
  2014年   7篇
  2013年   10篇
  2012年   8篇
  2011年   18篇
  2010年   24篇
  2009年   29篇
  2008年   29篇
  2007年   19篇
  2006年   21篇
  2005年   19篇
  2004年   8篇
  2003年   10篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   11篇
  1997年   13篇
  1996年   11篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1987年   5篇
  1985年   5篇
  1984年   2篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1973年   3篇
  1971年   5篇
  1959年   1篇
  1958年   1篇
  1957年   6篇
  1956年   3篇
  1955年   1篇
  1954年   3篇
  1952年   2篇
  1939年   1篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
1.
1. Plant–plant communication has been found to affect interactions between herbivores and plants in several model systems. In these systems, herbivore‐induced volatile chemical cues are emitted and perceived by other plants (receivers), which subsequently change their defensive phenotypes. Most studies have focused on how the effects of volatile cues affect plant damage, whereas herbivore performance has rarely been examined. 2. In this study, it is shown that plant–plant communication between willows reduced the growth rate, feeding rate, and conversion efficiency of some individuals but not others of a generalist caterpillar, Orgyia vetusta. 3. Using a paired, no‐choice trial design, there was substantial variation between caterpillar individuals in their response to willows that had been induced with a volatile plant–plant cue. This variation was explained by feeding parameters of the individual herbivores. Individuals behaved similarly when fed induced and non‐induced willow leaves. Specifically, growth rates of caterpillars that grew rapidly on non‐induced willow leaves were negatively affected by plant–plant cues, but growth rates of caterpillars that grew slowly on non‐induced willow leaves were not affected by the responses to volatiles from neighbouring willows. 4. Induction by volatile plant–plant cues reduced the growth rates of those individual herbivores that caused the greatest damage to willow, but had little effect on weak growers.  相似文献   
2.
Boron is generally considered to be phloem immobile or to haveonly limited phloem mobility in higher plants. Evidence suggests,however, that B may be mobile in some species within thePyrus,Malus andPrunusgenera. These genera utilize sorbitol as a primarytranslocated photosynthate and it has been clearly demonstratedthat B forms stable complexes with sorbitolin vitro.In the researchpresented here we demonstrate, further, that B is freely phloemmobile inPyrus, MalusandPrunusspecies and suggest that thisis mediated by the formation and transport of B-sorbitol complexes. The pattern of B distribution within shoot organs and the translocationof foliar-applied, isotopically-enriched10B was studied in sixtree species. Results demonstrate that in species in which sorbitolis a major sugar (sorbitol-rich), B is freely mobile while inspecies that produce little or no sorbitol (sorbitol-poor) Bis largely immobile. The sorbitol-rich species used here werealmond [Prunus amygdalusB. syn.P. dulcis(Mill.)], apple (MalusdomesticaB.) and nectarine (Prunus persicaL. B. var.nectarinaM.),sorbitol-poor species included fig (Ficus caricaL.), pistachio(Pistacia veraL.) and walnut (Juglans regiaL.). In sorbitol-richspecies foliar applied10B was transported from the treated leavesto adjacent fruit and specifically to the fruit tissues (hull,shell or kernel) that developed during the experimental period.Whereas, foliar-applied10B was rapidly translocated out of leaves,only a small percentage of the11B present in the leaf at thetime of foliar application was retranslocated. In sorbitol-richspecies, B concentrations differed only slightly between oldand young leaves while fruit tissue had significantly greaterB concentrations than leaves. In contrast, sorbitol-poor specieshad significantly higher B concentrations in older leaves thanyoung leaves while fruit tissue had the lowest B concentration.This occurred irrespective the source of plant B (soil, solutionor foliar-applied). In a subsequent experiment the growth ofapple trees in solutions free of applied B was maintained solelyby foliar applications of B to mature leaves. These resultsindicate that B is mobile in species that produce significantamounts of sorbitol. We propose that the mobility of B in thesespecies is mediated by the formation of B-sorbitol complexes. Almond; Prunus amygdalus ; apple; Malus domestica; nectarine; Prunus persica; fig; Ficus carica; pistachio; Pistacia vera; walnut; Juglans regia; boron; phloem mobility; deficiency; toxicity; inductively coupled plasma-mass; spectrometer  相似文献   
3.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   
4.
The proposal that indol-3yl-acetic acid (IAA) regulates acropetaltransport in stems by acting along the transport channel wasfurther investigated using decapitated seedlings of Phaseolusvulgaris. Concentrations of two inhibitors of auxin transport,which did not interfere with IAA-promoted basipetal transport,were found to decrease the IAA-promoted component of acropetalmetabolite movement. This latter inhibition was relieved bytreating the stems with a supplementary supply of IAA belowthe point of inhibitor application. These observations, togetherwith the finding that the response time of transport to hormoneaction was strongly dependent on the distance over which IAAneeded to move to be present throughout the length of the transportchannel, provide support for the above proposed mode of IAAaction.  相似文献   
5.
Abstract Ferns, bryophytes and lichens are the most diverse groups of plants in wet forests in south‐eastern Australia. However, management of this diversity is limited by a lack of ecological knowledge of these groups and the difficulty in identifying species for non‐experts. These problems may be alleviated by the identification and characterization of suitable proxies for this diversity. Epiphytic substrates are potential proxies. To evaluate the significance of some epiphytic substrates, fern and bryophyte assemblages on a common tree‐fern species, Dicksonia antarctica (soft tree‐fern), were compared with those on a rare species, Cyathea cunninghamii (slender tree‐fern), in eastern Tasmania, Australia. A total of 97 fern and bryophyte species were recorded on D. antarctica from 120 trunks at 10 sites, and 64 species on C. cunninghamii from 39 trunks at four of these sites. The trunks of C. cunninghamii generally supported fewer species than D. antarctica, but two mosses (particularly Hymenodon pilifer) and one liverwort showed significant associations with this host. Several other bryophytes and epiphytic ferns showed an affinity for the trunks of D. antarctica. Species assemblages differed significantly between both sites and hosts, and the differences between hosts varied significantly among sites. The exceptionally high epiphytic diversity associated with D. antarctica suggests that it plays an important ecological role in Tasmanian forests. Evidently C. cunninghamii also supports a diverse suite of epiphytes, including at least one specialist species.  相似文献   
6.
SYNOPSIS. A current model concerning the process of limb regenerationin vertebrates is examined. According to this model (Bryantet al, 1981), new positional values in the proximal-distal limbaxis are laid down as a result of local interactions betweencells in the limb circumference. Cells with disparate circumferentialpositional values come together at the site of future outgrowthand intercalation between them generates more distal levelsof the pattern. The results of a number of experiments on surgicallycreated symmetrical limb stumps are discussed in relation tothis model. In addition, an extension of this model to accountfor digit formation is presented, and the implications of thisformulation for limb evolution are discussed.  相似文献   
7.
Climate change effects on walnut pests in California   总被引:1,自引:0,他引:1  
Increasing temperatures are likely to impact ectothermic pests of fruits and nuts. This paper aims to assess changes to pest pressure in California's US$0.7 billion walnut industry due to recent historic and projected future temperature changes. For two past (1950 and 2000) and 18 future climate scenarios (2041–2060 and 2080–2099; each for three General Circulation Models and three greenhouse gas emissions scenarios), 100 years of hourly temperature were generated for 205 locations. Degree‐day models were used to project mean generation numbers for codling moth (Cydia pomonella L.), navel orangeworm (Amyelois transitella Walker), two‐spotted spider mite (Tetranychus urticae Koch), and European red mite (Panonychus ulmi Koch). In the Central Valley, the number of codling moth generations predicted for degree days accumulated between April 1 and October 1 rose from 2–4 in 1950 to 3–5 among all future scenarios. Generation numbers increased from 10–18 to 14–24 for two‐spotted spider mite, from 9–14 to 14–20 for European red mite, and from 2–4 to up to 5 for navel orangeworm. Overall pest pressure can thus be expected to increase substantially. Our study did not include the possibility of higher winter survival rates, leading to higher initial pest counts in spring, or of extended pest development times in the summer, factors that are likely to exacerbate future pest pressure. On the other hand, initiation of diapause may prevent an extension of the season length for arthropods, and higher incidence of heat death in summer may constrain pest population sizes. More information on the impact of climate change on complex agroecological food webs and on the response of pests to high temperatures is needed for improving the reliability of projections.  相似文献   
8.
As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars ( Populus balsamifera , Populus deltoides ) in Quebec, Canada within which European exotic Populus nigra and its hybrids have been extensively planted since the 1800s. Single nucleotide polymorphisms (SNPs) that appeared fixed within each species were characterized by DNA-sequencing pools of pure individuals. Thirty-five of these diagnostic SNPs were employed in a high-throughput assay that genotyped 635 trees of different age classes, sampled from 15 sites with various degrees of anthropogenic disturbance. The degree of admixture within sampled trees was then assessed through Bayesian clustering of genotypes. Hybrids were present in seven of the populations, with 2.4% of all sampled trees showing spontaneous admixture. Sites with hybrids were significantly more disturbed than pure stands, while hybrids comprised both immature juveniles and trees of reproductive age. All three possible F1s were detected. Advanced-generation hybrids were consistently biased towards P. balsamifera regardless of whether hybridization had occurred with P. deltoides or P. nigra. Gene exchange between P. deltoides and P. nigra was not detected beyond the F1 generation; however, detection of a trihybrid demonstrates that even this apparent reproductive isolation does not necessarily result in an evolutionary dead end. Collectively, results demonstrate the natural fertility of hybrid poplars and suggest that introduced genes could potentially affect the genetic integrity of native trees, similar to that arising from introgression between natives.  相似文献   
9.
10.
The aim of this study was to develop a valid and convenientexperimental system for exploring photosynthate transfer inthe developing wheat grain. Structural characteristics relatingto photosynthate transfer and the composition of the endospermcavity sap were examined during the linear stage of grain developmentat 25±3 d after anthesis. Based on the results of thesestudies, an experimental system was devised to permit the directmonitoring and manipulation of photosynthate transfer from theendosperm cavity to the storage endosperm. A novel approachwas used whereby insertions were made into the endosperm cavityby a needle at the embryo end and a piece of microcapillarytubing at the stigma end of the detached grain. By this means,the experimental solution was delivered into and flowed longitudinallyunder gravity through the endosperm cavity to exit at the stigmaend. The composition of the experimental solution reflected the principalsolute concentrations and osmolality of the in vivo endospermcavity contents. With the introduction of the solution intothe cavity, it was found that the viability of grain tissueswas maintained for up to 30 h. During a 24 h period both therate of sucrose uptake and subsequent incorporation into ethanolinsolublecomponents were shown to reproduce the rate of starch biosynthesisand in vivo grain growth. Moreover, the experimental systemeffectively reproduced the in vivo pathway of photosynthatetransfer from the endosperm cavity via the modified aleuronecells into the endosperm. As a result, this system providesa new approach to study photosynthate transfer in the developingwheat grain. Key words: Wheat grain, endosperm cavity, experimental system, photosynthate transport  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号