首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of DNA synthesis in cultures of human lymphoblasts decreased more than 80% within 30 min after the cells were exposed to methotrexate, a potent inhibitor of dihydrofolate reductase. Despite this rapid initial inhibition, DNA continued to be synthesized for at least an additional 6 h. The mode of this subsequent replication appeared to be semiconservative, as indicated by the buoyant density of 5-bromodeoxyuridine-substituted DNA in alkaline CsCl gradients. The growth rates of DNA chains in cells exposed to methotrexate were determined by sedimentation rate analysis in alkaline sucrose gradients. DNA synthesized during 2-min or 10-min pulses with labeled deoxycitidine in the presence of methotrexate had about the same sedimentation coefficient, 35 S, as controls. When methotrexate-treated cultures were pulse-labeled for 10 min and then chased for various times, DNA fragments of about 80 S accumulated. DNA synthesized in the presence of methotrexate was stable and elongated to bulk-size DNA after methotrexate inhibition of growth was removed by addition of thymidine and deoxycytidine. The data suggest that methotrexate reduces the rate of DNA replication by inhibiting chain initiation independently of chain elongation.  相似文献   

2.
DNA replication has been studied in in vitro cultured bovine liver cells permeabilized in 0.02% Triton X-100. The Km for TTP was 20 microM. The initial incorporation rate at 10 microM TTP concentration was about 12% of the in vivo synthesis and declined very strongly within 1 h. A similar decline of the incorporation rate was found at 0.12 microM TTP concentration. DNAase I digestion of DNA-matrix complexes obtained from isolated nuclei in 2 M NaCl revealed that newly replicated DNA was preferentially bound to the nuclear matrix. A similar digestion with S1 nuclease caused a selective release of short duplexes of Okazaki fragments with the complementary parental strand. The results show that in vivo replication continues in permeabilized cells in an almost unchanged way, except for a gradual decline of its rate which is mainly due to inactivation of one or more essential components.  相似文献   

3.
Increase in DNA replication sites in cells held at the beginning of S phase   总被引:2,自引:5,他引:2  
CHO cells were pulse labeled with 3H-thymidine after synchronization and blockage at the beginning of S phase for various intervals. The distribution of initiation sites for DNA replication and rates of chain growth were measured in autoradiographs prepared from these cells. Origins used for replication are widely distributed at or near the beginning of S phase, but usable origins increase continuously for many hours when FdU is used to block the synthesis of thymidylate. Potential origins are located about four microns apart, but in normal replication in these fibroblasts only one in 15 to 20 potential origins are used for initiation. On the other hand, when cells are held at the beginning of S phase for 12–14 h, about one-half of the potential origins are activated in part of the DNA and utilized when the cell is released from the block by supplying 3H-thymidine (10–6M). Chain growth during a short pulse decreases with time of the blockage at what appears to be a linear rate. However, cells can replicate long continuous stretches of their DNA with only 2×10–8M thymidine available in the medium for several hours when synthesis is blocked by FdU. The total amount of DNA replicated is, however, much less than when a concentration of 10–6 M thymidine is supplied for the same period. The origins which are finally used under any experimental condition appear to be a random sample of the total potential origins which are distributed in a regular repeating sequence along the DNA at about 12 kilobase intervals.  相似文献   

4.
Osmotically shocked spheroplasts from Saccharomyces cerevisiae incorporated deoxynucleoside triphosphates specifically into double-stranded nuclear and mitochondrial deoxyribonucleic acid (DNA). Results with this in vitro system for cells with and without mitochondrial DNA were compared. Strains lacking mitochondrial DNA were used to study nuclear DNA replication. With a temperature-sensitive mutant defective in DNA replication in vivo, DNA synthesis in vitro was temperature sensitive as well. The product of synthesis with all strains after very short labeling times consisted principally of short fragments that sedimented at approximately 4S in alkali; with longer pulse times or a chase with unlabeled nucleotides, they grew to a more heterogenous size, with an average of 6 to 8S and a maximum of 15S. There was little, if any, integration of these DNA fragments into the high-molecular-weight nuclear DNA. Analysis by CsCl density gradient centrifugation after incorporation of bromodeoxyuridine triphosphate showed that most of the product consisted of chains containing both preexisting and newly synthesized material, but there was also a small fraction (ca. 20%) in which the strands were fully synthesized in vitro. (32)P-label transfer ("nearest-neighbor") experiments demonstrated that at least a part of the material synthesized in vitro contained ribonucleic acid-DNA junctions. DNA pulse-labeled in vivo in a mutant capable of taking up thymidine 5'-monophosphate, sedimented in alkali at 4S, as in the case of the in vitro experiments.  相似文献   

5.
The sea urchin embryo nuclei which retained their ability to maintain the DNA synthesis in an in vitro system were isolated. The DNA synthesis isolated nuclei was shown to be an ATP-dependent process which is inhibited by low concentrations of actinomycin D, a polymerase alpha araCTP inhibitor. The newly synthesized DNA is represented by short fragments of about 4S. After addition of Ca2+, Mg2+-dependent DNAase to sea urchin embryo nuclei, the synthesis of short DNA fragments is enhanced. This stimulating effect of Ca2+, Mg2+-dependent DNAase is ATP-dependent and is observed only within a narrow range of enzyme concentrations (of the order of 1-5 units of DNAase activity per ml of incubation sample). The increase in the enzyme concentration to 10 or more units of activity results in the depression of DNA synthesis. It is concluded that DNA replication in sea urchin embryo nuclei depends on the presence of active DNAases as well as on the number of accessible initiation sites of DNA replication.  相似文献   

6.
Assembly of newly replicated chromatin.   总被引:53,自引:0,他引:53  
A Worcel  S Han  M L Wong 《Cell》1978,15(3):969-977
Mild staphylococcal nuclease digestions under isotonic conditions release fragments of a 200 Å diameter fiber from nuclei of Drosophila melanogaster tissue culture cells. These soluble fragments have high sedimentation coefficients (30–100S) and show tightly packed nucleosomes in the electron microscope. Under the same conditions, newly replicated chromatin is released as more slowly sedimenting fragments (14S). Within 20 min after DNA replication, the nascent chromatin gradually matures into compact supranucleosomal structures which are indistinguishable from bulk chromatin on the isokinetic sucrose gradients.We have used this fractionation technique to examine the question of the fate and assembly of the new histones. After short pulses with either 35S-methionine or 3H-lysine, the radioactive histones do not co-sediment with the bulk chromatin but appear instead in the fractions where the newly replicated DNA is found. Furthermore, the various nascent histones appear in different fractions on the gradient: histones H3 and H4 in 10–15S structures, histones H2A and H2B in 15–50S structures and histone H1 in 30–100S structures. These results, together with the analysis of pulse and pulse-chase experiments of both nascent DNA and histones, strongly suggest that histones H3 and H4 are deposited first on the nascent DNA (during or slightly after the DNA is replicated), histones H2A and H2B are deposited next (2–10 min later) and histone H1 is deposited last (10–20 min after DNA replication). A high turnover 20,000 dalton protein is also associated with the newly replicated chromatin.  相似文献   

7.
Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. We studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with [35S]methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.  相似文献   

8.
The effect of ultra-violet (U.V.)-irradiation on DNA replication was studied in a U.V.-resistant, human melanoma cell-line (MM96). Semi-conservative synthesis of DNA was decreased about five-fold by a U.V.-dose of 100 ergs/mm2. The size of DNA fragments synthesized in irradiated cells at short times after U.V. was smaller than those synthesized in unirradiated cells. Elongation of these fragments occurred with time, and 6 hours after irradiation cells synthesized DNA in fragments of the same size as obtained in unirradiated cells. In this post-replication repair process, elongation appeared to involve de novo synthesis and was not inhibited by theophylline.  相似文献   

9.
By means of optical and electron microscope autoradiography, following the administration of [3H]thymidine, we have detected a DNA replication near or on the nuclear membrane of meristematic cells of Haplopappus gracilis. This replication was observed only in the latter part of the S period. No localization to the nuclear membrane was seen at the beginning of the S period. Localization of the grains to the nuclear membrane in late S was observed both after short pulses and pulses as long as 1 h, and with chases of up to 2 h. It is concluded that the peripherally localized DNA replication is due to a DNA fraction located at the nuclear membrane, which replicates in the last part of the S period. It is suggested that such a DNA fraction may in part correspond to the constitutive heterochromatin.  相似文献   

10.
We have studied the effect of in vivo treatment with trioxsalen on DNA replication in mammalian cells. In vitro cultured bovine liver cells were exposed to two or four cycles of treatment with 45 microM trioxsalen followed by irradiation with long-wave ultraviolet light. Thymidine incorporation was reduced by about 95% during the first hour after a double treatment. A large proportion of the label was released in alkaline sucrose gradients as a low molecular weight fraction (average length about 500 nucleotides) which was supposed to consist of replication origins containing DNA fragments. From the relative quantities of this DNA obtained at different times of the S phase we concluded that it contains a considerable but not precisely determinable proportion of non-origin DNA. We also find that the fraction is contaminated by a large excess of non-replicating bulk DNA.  相似文献   

11.
Hydroxyurea treatment of 3T6 mouse fibroblast cells infected with polyoma virus resulted within 15 min in more than a 20-fold reduction of the rate of both viral and cellular DNA synthesis. After the initial rapid inhibition, the rate of DNA synthesis remained essentially constant for at least 2 h. In the inhibited cells viral DNA accumulated as short chains with a sedimentation coefficient of about 4S (hydroxyurea fragments). A variable proportion of these fragments was released from the template strands when the viral DNA was extracted by the Hirt procedure. Reannealing experiments demonstrated that hydroxyurea fragments were polyoma-specific and probably synthesized on both parental strands at the replication forks.  相似文献   

12.
The ability of EAT cells to initiate DNA synthesis in the presence of high doses of hydroxyurea was examined using the recently developed method for crosslinking DNA in vivo. Since crosslinking blocks elongation but has little effect on initiation (Russev and Vassilev (1982) J. Mol. Biol. 161, 77-87), this approach permits a separate study of the two stages of the DNA replication. We found out that hydroxyurea did not greatly affect the initiation of DNA replication but strongly inhibited the elongation of the already initiated new DNA chains. This resulted in the formation of short fragments enriched in sequences synthesized at and around the sites where DNA initiation began. These fragments were not ligated to the high molecular weight chromosomal DNA and could be released under denaturing conditions in single-stranded form. The reassociation and electrophoretic analysis showed that they contained about 200 nucleotides long interspersed DNA sequences repeated approx. 10(4) times per haploid genome, that probably served as replication origins.  相似文献   

13.
DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)‐rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T‐rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25–30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low‐efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals.  相似文献   

14.
M Charron  R Hancock 《Biochemistry》1990,29(41):9531-9537
To study the biochemical processes which DNA topoisomerase II carries out in mammalian cells, which have not been identified, we have examined the effects on chromosome replication in Chinese hamster ovary cells of an agent which traps molecules of topoisomerase II when they are covalently integrated into DNA during their reaction. This agent, 4'-demethylepipodophyllotoxin 9-(4,6-O-thenylidene-beta-D-glucopyranoside) (VM-26), targets this enzyme specifically according to a compelling body of evidence. Using synchronously growing cells, we found that VM-26 at a cytotoxic concentration (0.08 microM) did not affect DNA replication during the S phase. The formation of mitotic chromosomes was delayed by 4 h, and its rate was reduced thereafter, causing a delay in mitosis of greater than 14 h in 65% of the cells; in some cells, the chromatin was aberrantly condensed, forming diffuse chromosomes or particles. Chromosome formation was completely inhibited at 0.32 microM VM-26. DNA fragments derived from topoisomerase II molecules covalently integrated in DNA and trapped by VM-26 were detected by FIGE analysis in the G2 period, but not during the S phase. The delay of chromosome formation appeared to be caused by two factors: first, a delay in the completion of DNA replication, because progress of some cells to mitosis after removal of VM-26 was prevented by aphidicolin, an inhibitor of DNA polymerases alpha and delta; and second, a delay of chromosome formation in cells which had apparently completed DNA replication. The observations reported here show that topoisomerase II carries out reactions which are essential for formation of mitotic chromosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Chromatin replication was studied in isolated nuclei from Concanavalin A activated lymphocytes. Digestion with micrococcal nuclease revealed that the resistant fraction of in vitro replicated DNA is associated with nucleosomes. Earlier experiments had shown that the nuclease resistant fraction of nascent DNA is composed of fragments which are shorter than the nuclease resistant fragments of bulk DNA. In this communication we demonstrate that the short fragments of nascent DNA are differently bound to nucleosome like structures compared to bulk DNA. At 0.5 M NaCl a fraction of pulse labeled labeled DNA is released from these structures and appears as free double stranded DNA of about 140 base pair length (5S DNA) while the 185 pair fragments of mature replicated DNA remain attached to nucleosomes under these conditions. The experiments may indicate that the interaction of a fraction of replicating DNA with histones differs from that of bulk DNA.  相似文献   

16.
Mutant lines of mouse L cells, TS A1S9, and TS C1, show temperature- sensitive (TS) DNA synthesis and cell division when shifted from 34 degrees to 38.5 degrees C. With TS A1S9 the decline in DNA synthesis begins after 6-8 h at 38.5 degrees C and is most marked at about 24 h. Most cells in S, G2, or M at temperature upshift complete one mitosis and accumulate in the subsequent interphase at G1 or early S as a result of expression of a primary defect, failure of elongation of newly made small DNA fragments. Heat inactivation of TS C1 cells is more rapid; they fail to complete the interphase in progress at temperature upshift and accumulate at late S or G2. Inhibition of both cell types is reversible on return to 34 degrees C. Cell and nuclear growth continues during inhibition of replication. Expression of both TS mutations leads to a marked change in gross organization of chromatin as revealed by electron microscopy. Nuclei of wild-type cells at 34 degrees and 38.5 degrees C and mutant cells at 34 degrees C show a range of aggregation of condensed chromatin from small dispersed bodies to large discrete clumps, with the majority in an intermediate state. In TS cells at 38.5 degrees C, condensed chromatin bodies in the central nuclear region become disaggregated into small clumps dispersed through the nucleus. Morphometric estimation of volume of condensed chromatin indicates that this process is not due to complete decondensation of chromatin fibrils, but rather involves dispersal of large condensed chromatin bodies into finer aggregates and loosening of fibrils within the aggregates. The dispersed condition is reversed in nuclei which resume DNA synthesis when TS cells are downshifted from 38.5 degrees to 34 degrees C. The morphological observations are consistent with the hypothesis that condensed chromatin normally undergoes an ordered cycle of transient, localized disaggregation and reaggregation associated with replication. In temperature-inactivated mutants, normal progressive disaggregation presumably occurs, but subsequent lack of chromatin replication prevents reaggregation.  相似文献   

17.
Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.  相似文献   

18.
Gene replication in the presence of aphidicolin   总被引:1,自引:0,他引:1  
DNA replication in the nucleus of eukaryotic cells is restricted to the S phase of the cell cycle, and different genes are duplicated at specific times, according to a well-defined temporal order. We have investigated whether activation of initiation sites, in proximity to genes that are replicated in different portions of the S phase, could be detected when synchronized 10T1/2 cells were maintained in aphidicolin (APC), an inhibitor of DNA polymerases alpha and delta. Cells released from confluence arrest into medium containing 2 micrograms/mL APC progressed into the S phase, and nascent DNA accumulated during incubations of 24 and 32 h. Exposure to APC for 40 or 48 h resulted in growth of the radiolabeled DNA into larger molecules. Replicating DNA was isolated in CsCl gradients and probed with 32P-labeled gene probes for early-replicating genes (e.g., Ha-ras, mos, and myc) and a late-replicating gene (VH Ig). DNA replicated during the 24-h incubation in APC was enriched in Ha-ras gene sequences. The VH Ig gene did not replicate in cells incubated for as long as 56 h with APC. The myc and the mos genes were detected after 32 and 40 h in APC, respectively. The myc gene is replicated in 10T1/2 cells after Ha-ras but before mos. Therefore, the order of activation of these genes was conserved in the presence of APC. The delay in replication of myc and mos correlated well with the slowing of DNA replication by APC.  相似文献   

19.
U L?nn  S L?nn 《Nucleic acids research》1986,14(9):3883-3894
We describe an approach, using alkaline cell lysis and digestion with nuclease S1, which permits to distinguish between newly ligated DNA and the DNA of mature chromatin. When cells with steady-state labelled DNA (mature DNA) are analyzed, the results show labelled "nucleosomal-sized" DNA. However, when DNA of cells pulse-labelled with thymidine for 45 seconds is examined one can detect only large DNA. The newly ligated DNA is not reduced to "nucleosomal-sized" DNA by nuclease S1. When the large DNA is denatured in formamide one can detect 10 kb DNA fragments. Furthermore in pulse-chase experiments there appear, after formamide-treatment, increasing amounts of "nucleosomal-sized" DNA with a parallel decrease in the amount of 10 kb DNA fragments. Hence the newly ligated, large, DNA differs from mature DNA and represents a distinct stage during DNA replication.  相似文献   

20.
The complexity of the DNA of the free-living nematode Panagrellus silusiae has been examined. Reassociation kinetics of pressure-sheared fragments (approximately 290 nucleotides) in 0.18 M Na+ at 60 degrees C showed the presence of foldback, repetitive, and unique DNA sequence elements. The three classes comprise 9.3%, 26.1%, and 61.3% of the total DNA, respectively. The mean length of the foldback duplex DNA after digestion with S1 nuclease is about 185 nucleotides. There are about 1.8 x10(4) inverted repeats per genome. Sequence arrangement was deduced from (1) renaturation kinetic profiles of long and short fragments on hydroxylapatite; (2) the pattern of renaturation of tracer DNA, labeled in vitro with 125I, of various sizes after incubation with excess short fragments; and (3) thermal denaturation behavior of DNA that had been reassociated to various C0t values. It was found that DNA fragments of the repetitive fraction that are, at least, 2000 nucleotides in length are virtually free of unique sequences. Moreover, it is estimated that the repeated segments in this species could extend for 10,000 nucleotide pairs. Thus, Panagrellus DNA lacks the pattern of extensive short period interspersion that is typified by the DNA of Xenopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号