首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 914 毫秒
1.
2.
During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.  相似文献   

3.
4.
Micrococcal-nuclease digestion of adenovirus 2(ad 2) infected HeLa cell nuclei early after infection has been used to investigate the nucleoprotein nature of parental viral DNA. Viral DNA is more susceptible to nuclease digestion than cellular DNA. The pattern of digestion products changes as digestion proceeds from an indistinct pattern 1 hour post infection(pi) to a nucleosome-like pattern at 6 hours pi. The major differences between viral and cellular nucleoprotein products were i) a subnucleosome fraction from viral DNA and ii) the repeat size of DNA in viral nucleosomes was 165 base pairs and in cellular nucleosomes, 195 base pairs. Up to 50% viral DNA in nuclei 6 hours pi seems to be in nucleosome-like structures. Such patterns are not seen on digestion of partially-uncoated virus or isolated cores.  相似文献   

5.
6.
We have previously shown that clusters of guanine quadruplex (G4) structures can form in the human herpes simplex-1 (HSV-1) genome. Here we used immunofluorescence and immune-electron microscopy with a G4-specific monoclonal antibody to visualize G4 structures in HSV-1 infected cells. We found that G4 formation and localization within the cells was virus cycle dependent: viral G4s peaked at the time of viral DNA replication in the cell nucleus, moved to the nuclear membrane at the time of virus nuclear egress and were later found in HSV-1 immature virions released from the cell nucleus. Colocalization of G4s with ICP8, a viral DNA processing protein, was observed in viral replication compartments. G4s were lost upon treatment with DNAse and inhibitors of HSV-1 DNA replication. The notable increase in G4s upon HSV-1 infection suggests a key role of these structures in the HSV-1 biology and indicates new targets to control both the lytic and latent infection.  相似文献   

7.
8.
Infections with DNA viruses commonly result in the association of viral genomes and replication compartments with cellular nuclear substructures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. While there is evidence that viral genomes can associate with preexisting ND10, we demonstrate in this study by live-cell microscopy that structures resembling ND10 form de novo and in association with viral genome complexes during the initial stages of herpes simplex virus type 1 (HSV-1) infection. Consistent with previous studies, we found that the major ND10 proteins PML, Sp100, and hDaxx are exchanged very rapidly between ND10 foci and the surrounding nucleoplasm in live cells. The dynamic nature of the individual protein molecule components of ND10 provides a mechanism by which ND10 proteins can be recruited to novel sites during virus infection. These observations explain why the genomes and replication compartments of DNA viruses that replicate in the cell nucleus are so commonly found in association with ND10. These findings are discussed with reference to the nature, location, and potential number of HSV-1 prereplication compartments and to the dynamic aspects of HSV-1 genomes and viral products during the early stages of lytic infection.  相似文献   

9.
Integration of viral DNA into the host genome is an essential step in retroviral replication that is mediated by a stable nucleoprotein complex comprising a tetramer of integrase bridging the two ends of the viral DNA in a stable synaptic complex (SSC) or intasome. Assembly of HIV‐1 intasomes requires several hundred base pairs of nonspecific internal DNA in addition to the terminal viral DNA sequence that is protected in footprinting experiments. We find that only one of the viral DNA ends in the intasome requires long‐nonspecific internal DNA for intasome assembly. Although intasomes are unstable in solution when the nonspecific internal DNA is cut off after assembly, they are stable in agarose gels. These complexes are indistinguishable from SSCs with nonspecific internal DNA in Förster resonance energy transfer (FRET) experiments suggesting the interactions with the viral DNA and integrase tetramer are the same regardless of the presence of nonspecific internal DNA. We discuss models of how the internal DNA contributes to intasome assembly and stability. FRET is exquisitely sensitive to the distance between the fluorophores and given certain assumptions can be translated to distance measurements. We anticipated that a set of such distance constraints would provide a map of the DNA path within the intasome. In reality, the constraints we could impose from the FRET data were quite weak allowing a wide envelope for the possible path. We discuss the difficulties of converting the FRET signal to absolute distance within nucleoprotein complexes.  相似文献   

10.
Herpesviruses are the second leading cause of human viral diseases. Herpes Simplex Virus types 1 and 2 and Varicella-zoster virus produce neurotropic infections such as cutaneous and genital herpes, chickenpox, and shingles. Infections of a lymphotropic nature are caused by cytomegalovirus, HSV-6, HSV-7, and Epstein-Barr virus producing lymphoma, carcinoma, and congenital abnormalities. Yet another series of serious health problems are posed by infections in immunocompromised individuals. Common therapies for herpes viral infections employ nucleoside analogs, such as Acyclovir, and target the viral DNA polymerase, essential for viral DNA replication. Although clinically useful, this class of drugs exhibits a narrow antiviral spectrum, and resistance to these agents is an emerging problem for disease management. A better understanding of herpes virus replication will help the development of new safe and effective broad spectrum anti-herpetic drugs that fill an unmet need. Here, we present the first crystal structure of a herpesvirus polymerase, the Herpes Simplex Virus type 1 DNA polymerase, at 2.7 A resolution. The structural similarity of this polymerase to other alpha polymerases has allowed us to construct high confidence models of a replication complex of the polymerase and of Acyclovir as a DNA chain terminator. We propose a novel inhibition mechanism in which a representative of a series of non-nucleosidic viral polymerase inhibitors, the 4-oxo-dihydroquinolines, binds at the polymerase active site interacting non-covalently with both the polymerase and the DNA duplex.  相似文献   

11.
12.
13.
Histones interact with herpes simplex virus type 1 (HSV-1) genomes and localize to replication compartments early during infections. However, HSV-1 genomes do not interact with histones in virions and are deposited in nuclear domains devoid of histones. Moreover, late viral replication compartments are also devoid of histones. The processes whereby histones come to interact with HSV-1 genomes, to be later displaced, remain unknown. However, they would involve the early movement of histones to the domains containing HSV-1 genomes and the later movement away from them. Histones unbind from chromatin, diffuse through the nucleoplasm, and rebind at different sites. Such mobility is upregulated by, for example, phosphorylation or acetylation. We evaluated whether HSV-1 infection modulates histone mobility, using fluorescence recovery after photobleaching. All somatic H1 variants were mobilized to different degrees. H1.2, the most mobilized, was mobilized at 4 h and further so at 7 h after infection, resulting in increases in its "free" pools. H1.2 was mobilized to a "basal" degree under conditions of little to no HSV-1 protein expression. This basal mobilization required nuclear native HSV-1 genomes but was independent of HSV-1 proteins and most likely due to cellular responses. Mobilization above this basal degree, and increases in H1.2 free pools, however, depended on immediate-early or early HSV-1 proteins, but not on HSV-1 genome replication or late proteins. Linker histone mobilization is a novel consequence of cell-virus interactions, which is consistent with the dynamic interactions between histones and HSV-1 genomes during lytic infection; it may also participate in the regulation of viral gene expression.  相似文献   

14.
P Clertant  P Gaudray    F Cuzin 《The EMBO journal》1984,3(2):303-307
Nucleoprotein complexes extracted from the nuclei of mouse cells lytically infected with polyoma virus contain an ATPase activity which appears to correspond to that of the viral large T protein, as it exhibits the same characteristic properties; in particular, the activity is extensively inhibited by polyclonal antibodies from animals bearing polyoma tumors (anti-T antigen antibodies) and by monoclonal antibodies against large T. Significant amounts of DNA were immunoprecipitated by adding these antibodies to the nucleoprotein complex, suggesting that the protein is tightly bound to DNA in the viral chromatin. Since one of the monoclonal antibodies quantitatively immunoprecipitated the pulse-labeled replicative intermediates, we conclude that some large T protein remains physically associated with the DNA throughout its replication cycle. After exposure to salt concentrations higher than 1 M KCl, about half of the large T-specific ATPase activity was still observed to co-sediment with 21S form I viral DNA. The observations that the sedimentation coefficient of the salt-stable complexes was shifted to 16S after a limited endonucleolytic digestion, and that both the viral DNA and the ATPase activity were co-precipitated in the presence of polyethylene glycol at high ionic strength, further demonstrated that the protein is engaged in an unusually stable complex with DNA in the viral chromatin.  相似文献   

15.
Initiation of herpes simplex virus type 1 (HSV-1) DNA replication during productive infection of fibroblasts and epithelial cells requires attachment of the origin binding protein (OBP), one of seven essential virus-encoded DNA replication proteins, to specific sequences within the two viral origins, oriL and oriS. Whether initiation of DNA replication during reactivation of HSV-1 from neuronal latency also requires OBP is not known. A truncated protein, consisting of the C-terminal 487 amino acids of OBP, termed OBPC, is the product of the HSV UL8.5 gene and binds to origin sequences, although OBPC's role in HSV DNA replication is not yet clear. To characterize protein-DNA complex formation at oriS in cells of neural and nonneural lineage, we used nuclear extracts of HSV-infected nerve growth factor-differentiated PC12 and Vero cells, respectively, as the source of protein in gel shift assays. In both cell types, three complexes (complexes A, B, and C) which contain either OBP or OBPC were shown to bind specifically to a probe which contains the highest-affinity OBP binding site in oriS, site 1. Complex A was shown to contain OBPC exclusively, whereas complexes B and C contained OBP and likely other cellular proteins. By fine-mapping the binding sites of these three complexes, we identified single nucleotides which, when mutated, eliminated formation of all three complexes, or complexes B and C, but not A. In transient DNA replication assays, both mutations significantly impaired oriS-dependent DNA replication, demonstrating that formation of OBP-containing complexes B and C is required for efficient initiation of oriS-dependent DNA replication, whereas formation of the OBPC-containing complex A is insufficient for efficient initiation.  相似文献   

16.
Replication of polyoma DNA in nuclear extracts and nucleoprotein complexes.   总被引:2,自引:0,他引:2  
Viral nucleoprotein complexes containing radioactive form l DNA or replicative intermediates were extracted from nuclei isolated from polyoma-infected 3T6 fibroblasts, pulse labelled with [3H]thymidine. Such extracts incorporated labelled dGTP into viral DNA, similar to intact isolated nuclei, but at a decreased rate and for shorter periods. The two kinds of nucleoprotein complexes containing form l DNA or replicative intermediates were separated and purified. Each complex retained some capacity to incorporate labelled dGTP and this reaction was stimulated by ATP. The new DNA consisted mainly of short strands hydrogen-bonded to the template. With replicative intermediate complexes incorporation occurred at random into different parts of the viral DNA, while form l complexes incorporated dGTP preferentially into a region around the origin of replication. A crude preparation of T-antigen stimulated the incorporation. The amount of synthesis was low and it was not possible to decide with certainty whether some of the incorporation observed with form 1 complexes represented initiation of new rounds of replication or whether it represented elongation of early replicative intermediates.  相似文献   

17.
Genome replication of herpes simplex viruses (HSV) in cultured cells is thought to be started by the action of the virus-encoded origin-binding protein (OBP). In experiments using two HSV-1 mutants with temperature-sensitive lesions in the helicase domain of OBP, we demonstrated that this function is essential during the first 6 hours of the lytic cycle. Once DNA synthesis has started, this function is no longer required, suggesting that origin-driven initiation of viral DNA replication is a single event rather than a continuous process.  相似文献   

18.
5-Ethyl-2'-deoxyuridine (EDU) is a potent and selective inhibitor of the replication of herpes simplex virus type 1 (HSV-1) and 2 (HSV-2), which is currently being pursued for the topical treatment of HSV-1 and HSV-2 infections in humans. Using [4-14C]EDU as the radiolabeled analogue of EDU, it was ascertained that, at antivirally active doses, EDU is phosphorylated to a much greater extent by HSV-infected Vero cells than by mock-infected cells. Within the HSV-1-infected cells, EDU was incorporated to a much greater extent into viral DNA than cellular DNA. Using varying doses of EDU, a close correlation was found between the incorporation of EDU into viral DNA, the inhibition of viral DNA synthesis, and the inhibition of virus yield. It is postulated that the selectivity of EDU as an antiviral agent depends on both its preferential phosphorylation by the virus-infected cell and its preferential incorporation into viral DNA. The latter than results in a suppression of viral DNA synthesis and, hence, shutoff of viral progeny formation.  相似文献   

19.
Three subnuclear systems capable of continuing many aspects of simian virus 40 (SV40) DNA replication were characterized in an effort to define the minimum requirements for "normal" DNA replication in vitro. Nuclear extracts, prepared by incubating nuclei isolated from SV40-infected CV-1 cells in a hypotonic buffer to release both SV40 replicating and mature chromosomes, were either centrifuged to separate the total SV40 nucleoprotein complexes from the soluble nucleosol or fractionated on sucrose gradients to provide purified SV40 replicating chromosomes. With nuclear extracts, CV-1 cell cytosol stimulated total DNA synthesis, elongation of nascent DNA chains, maturation and joining of "Okazaki pieces," and the conversion of replicating viral DNA into covalently closed, superhelical DNA. Nucleoprotein complexes responded similarly, but frequently the response was reduced by 10 to 30%. In contrast, isolated replicating chromosomes in the presence of cytosol appeared only to complete and join Okazaki pieces already present on the template; without cytosol, Okazaki pieces incorporated alpha-(32)P-labeled deoxynucleoside triphosphates but failed to join. Consequently, replicating chromosomes failed to extensively continue nascent DNA chain growth, and the conversion of viral replicating DNA into mature DNA was seven to eight times less than that observed in nuclear extracts. Addition of neither cytosol nor nucleosol corrected this problem. In the presence of cytosol, nonspecific endonuclease activity was not a problem in any of the three in vitro systems. Extensive purification of replicating chromosomes was limited by three as yet irreversible phenomena. First, replicating chromosomes isolated in a low-ionic-strength medium had a limited capability to continue DNA synthesis. Second, diluting either nuclear extracts or replicating chromosomes before incubation in vitro stimulated total DNA synthesis but was accompanied by the simultaneous appearance of small-molecular-weight nascent DNA not associated with intact viral DNA templates and a decrease in the synthesis of covalently closed viral DNA. Although this second phenomenon appeared similar to the first, template concentration alone could not account for the failure of purified replicating chromosomes to yield covalently closed DNA. Finally, preparation of nucleoprotein complexes in increasing concentrations of NaCl progressively decreased their ability to continue DNA replication. Exposure to 0.3 M NaCl removed one or more factors required for DNA synthesis which could be replaced by addition of cytosol. However, higher NaCl concentrations yielded nucleoprotein complexes that had relatively no endogenous DNA synthesis activity and that no longer responded to cytosol. These data demonstrate that continuation of endogenous DNA replication in vitro requires both the soluble cytosol fraction and a complex nucleoprotein template whose ability to continue DNA synthesis depends on its concentration and ionic environment during its preparation.  相似文献   

20.
Integrase is the key enzyme that mediates integration of retroviral DNA into cellular DNA which is essential for viral replication. Inhibitors of HIV‐1 that target integrase recognize the nucleoprotein complexes formed by integrase and viral DNA substrate (intasomes) rather than the free enzyme. Atomic resolution structures of HIV‐1 intasomes are therefore required to understand the mechanisms of inhibition and drug resistance. To date, prototype foamy virus (PFV) is the only retrovirus for which such structures have been determined. We show that PFV strand transfer complexes (STC) can be assembled on product DNA without going through the normal forward reaction pathway. The finding that a retroviral STC can be assembled in this way may provide a powerful tool to alleviate the obstacles that impede structural studies of nucleoprotein intermediates in HIV‐1 DNA integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号