首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mouse L-cells treated with cytosine arabinoside, hydroxyurea, fluorodeoxyuridine, methotrexate, or mitomycin C rapidly cease DNA synthesis and stop dividing. Such inhibition of DNA replication is followed by interruption of formation of lysine- and arginine-containing proteins, including chromatin-bound histones, and by a major reorganization of the heterochromatin of the central nucleoplasm, manifest as disaggregation of large clumps of this condensed chromatin. Morphometric analysis revealed both cell and nuclear enlargement in cells treated with such antimetabolites of DNA replication. These observations are in contrast to those made with WT-4 cells starved of isoleucine or treated with cycloheximide. Isoleucine depletion was associated with inhibition of DNA synthesis and continued increase of cell and nuclear volume, but not with massive disaggregation of heterochromatin. Cycloheximide produced inhibition of DNA synthesis and protoplasmic growth, and also prevented structural reorganization of chromatin. A model is presented which suggests that initiation of chromatin replication is associated with a process, dependent upon de novo protein synthesis, which results in chromatin disaggregation. This can be revealed by inhibition of the correct replication of chromatin DNA and chromatin protein.  相似文献   

2.
The properties of DNA in situ as reflected by its staining with acridine orange are different in quiescent nonstimulated lymphocytes as compared with interphase lymphocytes that have entered the cell cycle after stimulation by mitogens. The difference is seen after cell treatment with buffers at pH 1.5 (1.3-1.9 range) followed by staining with acridine orange at pH 2.6 (2.3-2.9). Under these conditions the red metachromatic fluorescence of the acridine orange-DNA complex is higher in quiescent cells than in the cycling lymphocytes while the orthochromatic green fluorescence is higher in the cycling, interphase cells. The results suggest that DNA in condensed chromatin of quiescent lymphocytes (as in metaphase chromosomes) is more sensitive to acid-denaturation than DNA in dispersed chromatin of the cycling interphase cells. The phenomenon is used for flow cytometric differentiation between G0 and G1 cells and between G2 and M cells. In contrast to normal lymphocytes the method applied to neoplastic cells indicates the presence of cell subpopulations with condensed chromatin but with DNA content characteristic not only of G1 but also of S and G2 cells. The possibility that these cells represent quiescent (resting) subpopulations, arrested in G1, S and/or G2, is discussed.  相似文献   

3.
The involvement of altered protein metabolism in the expression of the temperature-sensitive (ts) pleiotropic phenotype of ts A1S9 cells was investigated. Cells are ts in growth and DNA replication. They undergo decondensation of their heterochromatin, interruptions of chromatin synthesis, and changes in cell size and morphology at the non-permissive temperature (npt) of 38.5 degrees C. Whereas the rates of incorporation of 3H-leucine, 35S-methionine, and 3H-fucose into proteins were unaffected at 38.5 degrees C, net protein accumulation was greatly reduced. This imbalance resulted from a rapid increase in the rate of protein degradation at the npt. Enhancement of protein degradation was detected within 2-4 hours after temperature upshift and constitutes the earliest metabolic alteration thus far observed during expression of the temperature-sensitive phenotype. The average half-life of proteins performed in ts A1S9 cells at 34 degrees C was decreased four-fold at the npt, and all major cytoplasmic proteins were affected equally. Enhanced protein degradation at the npt was shown to be sensitive to cycloheximide, ammonia, chloroquine, and vinblastine at concentrations that did not affect the basal protein degradation of normally cycling cells. Increased protein degradation at 38.5 degrees C did not involve an equivalent increase in total cellular protease activity. The data obtained are compatible with a model that suggests that temperature inactivation of the ts A1S9 gene product results in activation of a lysosome-mediated mechanism for the rapid degradation of cytoplasmic proteins.  相似文献   

4.
When ts A1S9 mouse L-cells are incubated at the nonpermissive temperature (38.5 degrees) DNA synthesis proceeds at the normal rate for 6 to 8 h; it then declines to attain 1 to 5% of this rate after 24 h. General protein synthesis from precursor leucine is relatively unaffected by the high temperature. In contrast, protein formation from lysine (and arginine) remains unchanged for 12 to 15 h after temperature upshift. It then drops and plateaus at about 25% of the initial rate after 32 h. The chromatin protein and DNA are fully conserved in ts A1S9 cells incubated at 38.5 degrees for at least 24 h after full expression of the ts defect. Temperature inactivation of the ts A1S9 gene product results in inhibition of de novo formation of chromatin. This is evidenced by coordinate suppression of incorporation of dThd and of lysine and arginine into chromatin-bound DNA and histone, respectively.  相似文献   

5.
Heat denaturation of DNA in situ, in unbroken cells, was studied in relation to the cell cycle. DNA in metaphase cells denatured at lower temperatures (8 degrees-10 degrees C lower) than DNA in interphase cells. Among interphase cells, small differences between G1, S, and G2 cells were observed at temperatures above 90 degrees C. The difference between metaphase and interphase cells increased after short pretreatment with formaldehyde, decreased when cells were heated in the presence of 1 mM MgCl2, and was abolished by cell pretreatment with 0.5 N HCl. The results suggest that acid-soluble constituents of chromatin confer local stability to DNA and that the degree of stabilization is lower in metaphase chromosomes than in interphase nuclei. These in situ results remain in contrast to the published data showing no difference in DNA denaturation in chromatin isolated from interphase and metaphase cells. It is likely that factors exist which influence the stability of DNA in situ are associated with the super-structural organization of chromatin in intact nuclei and which are lost during chromatin isolation and solubilization. Since DNA denaturation is assayed after cell cooling, there is also a possibility that the extent of denatured DNA may be influenced by some factors that control strand separation and DNA reassociation. The different stainability of interphase vs. metaphase cells, based on the difference in stability of DNA, offers a method for determining mitotic indices by flow cytofluorometry, and a possible new parameter for sorting cells in metaphase.  相似文献   

6.
Polyoma (Py) virus multiplies, at 34 and 38.5 C, in wild-type (WT-4) and in ts A1S9 mouse L cells, which are temperature sensitive for growth and for DNA replication (R. Sheinin, 1976; L. H. Thompson et al., 1970). De novo synthesis of double-stranded, fully covalently closed Py DNA has been shown to proceed by semiconservative replication in WT-4 and ts A1S9 cells at the permissive and nonpermissive temperatures. Cell DNA is made late during infection, by both cell types and at both temperatures. Semiconservative replication of cell DNA proceeds in Py-infected WT-4 cells incubated at 34 or at 38.5 C and in Py-infected ts A1S9 cells incubated at 34 C. In virus-infected ts A1S9 cells incubated at 38.5 C, cell DNA synthesis appears to proceed almost entirely by a process analogous to repair replication. The inability of ts A1S9 cells to produce large-molecular-weight chromosomal DNA strands, at 38.5 C, by the normal mechanism is not overcome by Py infection.  相似文献   

7.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase alpha was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

8.
The poly(ADP-ribose) polymerase activity of wild-type mouse L cells and of Balb/C-3T3 mouse fibroblasts remained relatively unchanged (at approx. 400 nmol substrate utilized/mg DNA per h) in actively-growing cells incubated at 34 degrees C or at 38.5 degrees C for at least 72 h. A similar result was obtained with the following temperature-sensitive cells grown at the permissive temperature (34 degrees C): ts A1S9 mouse L cells, ts C1 mouse L cells and Balb/C-3T3 ts mouse fibroblasts. The poly(ADP-ribose) polymerase activity of the temperature-sensitive cells was little affected during incubation for 20-24 h at the non-permissive temperature of 38.5 degrees C under which conditions temperature-inactivation of DNA replication was complete. Thereafter, this enzyme activity was found to increase some 2-fold, at a time when normal semi-conservative DNA synthesis was totally suppressed and replaced by repair replication (Sheinin, R. and Guttman, S. (1977) Biochim. Biophys. Acta 479, 105-118; Sheinin, R., Dardick, I. and Doane, F.W. (1980) Exp. Cell. Res., in the press).  相似文献   

9.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase α was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

10.
A Schmid  K D Fascher  W H?rz 《Cell》1992,71(5):853-864
Activation of the PHO5 gene in S. cerevisiae by phosphate starvation was previously shown to be accompanied by the disappearance of four positioned nucleosomes from the promoter. To investigate the mechanism, we replaced the PHO80 gene, a negative regulator of PHO5, by a temperature-sensitive allele. As a consequence, PHO5 can be activated in the presence of phosphate by a temperature shift from 24 degrees C to 37 degrees C. Under these conditions, the promoter undergoes the same chromatin transition as in phosphate-starved cells. Disruption of the nucleosomes by the temperature shift also occurs when DNA replication is prevented. Nucleosomes re-form when the temperature is shifted from 37 degrees C back to 24 degrees C in nondividing cells. Glucose is required for the disruption of the nucleosomes during the temperature upshift, not for their re-formation during the temperature downshift. These experiments prove that DNA replication is not required for the transition between the nucleosomal and the non-nucleosomal state at the PHO5 promoter.  相似文献   

11.
This report describes fine structural changes of interphase nuclei of human peripheral blood lymphocytes stimulated to growth by short-term culture with phytohemagglutinin. Chromatin is found highly labile, its changes accompanying the sequential increases of RNA and DNA synthesis which are known to occur in lymphocyte cultures. In "resting" lymphocytes, abundant condensed chromatin appears as a network of large and small aggregates. Early in the response to phytohemagglutinin, small aggregates disappear during increase of diffuse chromatin regions. Small aggregates soon reappear, probably resulting from disaggregation of large masses of condensed chromatin. Loosened and highly dispersed forms then appear prior to the formation of prophase chromosomes. The loosened state is found by radioautography to be most active in DNA synthesis. Small nucleoli of resting lymphocytes have concentric agranular, fibrillar, and granular zones with small amounts of intranucleolar chromatin. Enlarging interphase nucleoli change chiefly (1) by increase in amount of intranucleolar chromatin and alteration of its state of aggregation and (2) by increase in granular components in close association with fibrillar components.  相似文献   

12.
Temperature-sensitive (ts) A 1S9 mouse L cells continue to synthesize double-stranded covalently closed mitochondrial (mt) DNA at a temperature (38.5 degrees C) which is nonpermissive for chromosomal DNA replication. The amount of mt DNA made appears to be quantitatively linked to nuclear DNA synthesis. Nuclear DNA replication proceeds normally for 6-8 h after the cells are shifted to 38.5 degrees C, and then declines to reach a minimum at 20-24 h. The level of mt DNA synthesis remains high during this period and decreases once the ts lesion has been established.  相似文献   

13.
The data from earlier cytochemical studies, in which the metachromatic fluorochrome acridine orange (AO) was used to differentially stain single vs double-stranded DNA, suggested that DNA in situ in intact metaphase chromosomes or in condensed chromatin of G0 cells is more sensitive to denaturation, induced by heat or acid, than DNA in decondensed chromatin of interphase nuclei. Present studies show that, indeed, DNA in permeabilized metaphase cells, in contrast to cells in interphase, when exposed to buffers of low pH (1.5-2.8) becomes digestible with the single-strand-specific S1 or mung bean nucleases. A variety of extraction procedures and enzymatic treatments provided evidence that the presence of histones, HMG proteins, and S-S bonds in chromatin, as well as phosphorylation or poly(ADP)ribosylation of chromatin proteins, can be excluded as a factor responsible for the differential sensitivity of metaphase vs interphase DNA to denaturation. Cell treatment with NaCl at a concentration of 1.2 N and above abolished the difference between interphase and mitotic cells, rendering DNA in mitotic cells less sensitive to denaturation; such treatment also resulted in decondensation of chromatin visible by microscopy. The present data indicate that structural proteins extractable with greater than or equal to 1.2 N NaCl may be involved in anchoring DNA to the nuclear matrix or chromosome scaffold and may be responsible for maintaining a high degree of chromatin compaction in situ, such as that observed in metaphase chromosomes or in G0 cells. Following dissociation of histones, the high spatial density of the charged DNA polymer may induce topological strain on the double helix, thus decreasing its local stability; this can be detected by metachromatic staining of DNA with AO or digestion with single-strand-specific nucleases.  相似文献   

14.
Feitoza L  Guerra M 《Genetica》2011,139(3):305-314
Eukaryotic chromosomes are organized into two large and distinct domains, euchromatin and heterochromatin, which are cytologically characterized by different degrees of chromatin compaction during interphase/prophase and by post-synthesis modifications of histones and DNA methylation. Typically, heterochromatin remains condensed during the entire cell cycle whereas euchromatin is decondensed at interphase. However, a fraction of the euchromatin can also remain condensed during interphase and appears as early condensing prophase chromatin. 5S and 45S rDNA sites and telomere DNA were used to characterize these regions in metaphase and interphase nuclei. We investigated the chromosomal distribution of modified histones and methylated DNA in the early and late condensing prophase chromatin of two species with clear differentiation between these domains. Both species, Costus spiralis and Eleutherine bulbosa, additionally have a small amount of classical heterochromatin detected by CMA/DAPI staining. The distribution of H4 acetylated at lysine 5 (H4K5ac), H3 phosphorylated at serine 10 (H3S10ph), H3 dimethylated at lysine 4 or 9 (H3K4me2, H3K9me2), and 5-methylcytosine was compared in metaphase, prophase, and interphase cells by immunostaining with specific antibodies. In both species, the late condensing prophase chromatin was highly enriched in H4K5ac and H3K4me2 whereas the early condensing chromatin was very poor in these marks. H3K9me2 was apparently uniformly distributed along the chromosomes whereas the early condensing chromatin was slightly enriched in 5-methylcytosine. Signals of H3S10ph were restricted to the pericentromeric region of all chromosomes. Notably, none of these marks distinguished classical heterochromatin from the early condensing euchromatin. It is suggested that the early condensing chromatin is an intermediate type between classical heterochromatin and euchromatin.  相似文献   

15.
Chromatin folding in the interphase nucleus is not known. We compared the pattern of chromatin condensation in Indian muntjac, Chinese hamster ovary, murine pre B, and K562 human erythroleukemia cells during the cell cycle. Fluorescent microscopy showed that chromosome condensation follows a general pathway. Synchronized cells were reversibly permeabilized and used to isolate interphase chromatin structures. Based on their structures two major categories of intermediates were distinguished: (1) decondensed chromatin and (2) condensed chromosomal forms. (1) Chromatin forms were found between the G1 and mid-S phase involving veil-like, supercoiled, fibrous, ribboned structures; (2) condensing chromosomal forms appeared in the late-S, G2, and M phase, including strings, chromatin bodies, elongated pre-chromosomes, pre-condensed chromosomes, and metaphase chromosomes. Results demonstrate that interphase chromosomes are clustered in domains; condensing interphase chromosomes are linearly arranged. Our results raise questions related to telomer sequences and to the chemical nature of chromosome connectivity.  相似文献   

16.
The model of in situ DNA replication provided by immunofluorescence and confocal imaging is compared with observations obtained by electron microscopic studies. Discrepancies between both types of observations call into question the replication focus as a persistent nuclear structure and as a replication entity where DNA replication takes place. Most electron microscopic analyses reveal that replication sites are confined to dispersed chromatin areas at the periphery of condensed chromatin, and the distribution of replication factors exhibits the same localization pattern. Moreover, rapid migration of newly synthesized DNA from the replication sites towards the interior of condensed chromatin regions obviously takes place during S-phase. It implies modifications of replication domains, hardly detectable by fluorescence microscopy. The confrontation of different observations carried out at light microscopic or electron microscopic levels of resolution lead to a conclusion that a combination of in vivo fluorescence analysis with a subsequent ultrastructural investigation performed on the same cells will represent an optimal approach in future studies of nuclear functions in situ.  相似文献   

17.
Condensed chromatin and cell inactivation by single-hit kinetics   总被引:4,自引:0,他引:4  
Mammalian cells are extremely sensitive to gamma rays at mitosis, the time at which their chromatin is maximally condensed. The radiation-induced killing of mitotic cells is well described by single-hit inactivation kinetics. To investigate if radiation hypersensitivity by single-hit inactivation correlated with chromatin condensation, Chinese hamster ovary (CHO) K1 (wild-type) and xrs-5 (radiosensitive mutant) cells were synchronized by mitotic shake-off procedures and the densities of their chromatin cross sections and their radiosensitivities were measured immediately and 2 h into G1 phase. The chromatin of G1-phase CHO K1 cells was dispersed uniformly throughout their nuclei, and its average density was at least three times less than in the chromosomes of mitotic CHO K1 cells. The alpha-inactivation co-efficient of mitotic CHO K1 cells was approximately 2.0 Gy(-1) and decreased approximately 10-fold when cells entered G1 phase. The density of chromatin in CHO xrs-5 cell chromosomes at mitosis was greater than in CHO K1 cell chromosomes, and the radiosensitivity of mitotic CHO xrs-5 cells was the greatest with alpha = 5.1 Gy(-1). In G1 phase, CHO xrs-5 cells were slightly more resistant to radiation than when in mitosis, but a significant proportion of their chromatin was found to remain in condensed form adjacent to the nuclear membrane. These studies indicate that in addition to their known defects in DNA repair and V(D)J recombination, CHO xrs-5 cells may also be defective in some process associated with the condensation and/or dispersion of chromatin at mitosis. Their radiation hypersensitivity could result, in part, from their DNA remaining in compacted form during interphase. The condensation status of DNA in other mammalian cells could define their intrinsic radiosensitivity by single-hit inactivation, the mechanism of cell killing which dominates at the dose fraction size (1.8-2.0 Gy) most commonly used in radiotherapy.  相似文献   

18.
tsJT60 cells are G0-specific temperature-sensitive mutants of the cell cycle from Fischer rats i.e., they grow exponentially at both 34 degrees and 39.5 degrees C, but when stimulated with fetal bovine serum (FBS) from the resting state (G0) they enter S phase at 34 degrees C but not at 39.5 degrees C. Epidermal growth factor (EGF) also induced DNA synthesis, although weakly, in G0-arrested tsJT60 cells at 34 degrees C but failed at 39.5 degrees C. When G0-arrested tsJT60 cells were stimulated at 39.5 degrees C with FBS plus EGF, they entered S phase and divided. Somatomedin C, insulin, or transferrin had a weak effect in inducing DNA synthesis in G0-arrested cells when applied at 34 degrees C or with FBS at 39.5 degrees C. Fibroblast growth factor, platelet-derived growth factor, or 12-O-tetradecanoylphorbol 13-acetate had no such stimulatory effect at 39.5 degrees C. Binding of 125I-somatomedin C was not temperature-sensitive. Several other ts mutant cells that were blocked at 39.5 degrees C from entering S phase from the resting state following FBS addition were stimulated by FBS plus EGF at 34 degrees C but not at 39.5 degrees C.  相似文献   

19.
Nucleo-cytoplasmic translocation of histone H1 during the HeLa cell cycle   总被引:1,自引:0,他引:1  
  相似文献   

20.
Cell cycle variations in chromatin structure detected by DNase I   总被引:3,自引:0,他引:3  
We have recently developed a reproducible method for the use of DNase I as a sensitive probe of chromatin structure (Prentice, D A & Gurley, L R, Biochim biophys acta 740 (1983) 134) [12] and have used this probe to investigate chromatin structure during the interphase of the cell cycle. Chinese hamster cells (line CHO) were synchronized by: (1) mitotic detachment, to obtain M-phase cells; (2) isoleucine deprivation, to obtain G1-phase cells; and (3) sequential use of isoleucine deprivation followed by release into the presence of hydroxyurea, to obtain cells blocked at the start of S phase. The cells were released from the various blocking schemes and nuclei were isolated and digested with DNase I at various times. The digestion kinetics were monitored to detect possible changes in chromatin condensation through the cell cycle. The chromatin was much more accessible to DNase I in G1 phase than in S or G2 phase, with only small variations in structure detected in late G1 and very early S phase. From early S phase up to mitosis, the chromatin became increasingly condensed and inaccessible to DNase I action. These results support the concept of a chromatin condensation cycle during interphase as well as during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号