首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
The improvement of garlic plants (Allium sativum L.) via biotechnological approaches is currently limited by the lack of an applicable direct gene transfer system. In this paper, we present the development of a genetic transformation system using particle bombardment for gene delivery and immature clove-derived callus as the gene target. Plasmid DNA (pBI221.23), containing the selectable "hpt" gene for hygromycin resistance and the reporter "gus" gene, was delivered into callus tissue that had been previously treated with aurintricarboxylic acid as an endogenous nuclease inhibitor. The transformed calli were selected using hygromycin B, regenerated, and analysed at the molecular level using DNA hybridization, transgenome rescue and histochemical beta-glucuronidase assay. The results indicated that biolistic transformation can lead to the transfer, expression and stable integration of a DNA fragment into garlic chromosomal DNA. The relative simplicity of this system is a good recommendation for its future use in the production of genetically modified garlic plants.  相似文献   

3.
4.
A transformation procedure for phalaenopsis orchid established by using immature protocorms for Agrobacterium infection was aimed at the introduction of target genes into individuals with divergent genetic backgrounds. Protocorms obtained after 21 days of culture on liquid New Dogashima medium were inoculated with Agrobacterium strain EHA101(pIG121Hm) harboring both -glucuronidase (GUS) and hygromycin resistance genes. Subculture of the protocorms on acetosyringone-containing medium 2 days before Agrobacterium inoculation gave the highest transformation efficiencies (1.3–1.9%) based on the frequency of hygromycin-resistant plants produced. Surviving protocorms obtained 2 months after Agrobacterium infection on selection medium containing 20 mg l–1 hygromycin were cut transversely into two pieces before transferring to recovery medium without hygromycin. Protocorm-like bodies (PLBs) proliferated from pieces of protocorms during a 1-month culture on recovery medium followed by transfer to selection medium. Hygromycin-resistant phalaenopsis plants that regenerated after the re-selection culture of PLBs showed histochemical blue staining due to GUS. Transgene integration of the hygromycin-resistant plants was confirmed by Southern blot analysis. A total of 88 transgenic plants, each derived from an independent protocorm, was obtained from ca. 12,500 mature seeds 6 months after infection with Agrobacterium. Due to the convenient protocol for Agrobacterium infection and rapid production of transgenic plants, the present procedure could be utilized to assess expression of transgenes under different genetic backgrounds, and for the molecular breeding of phalaenopsis.  相似文献   

5.
The Agrobacterium-mediated transformation system was extended to a famous Javanica rice variety, Rojolele, that is cultivated in Indonesia now. Efficient callus induction from immature and mature seeds of Rojolele did not succeed by any previous method for any rice cultivar. In this study, the callus from mature seeds of Rojolele exhibited a compact and nodular appearance on C medium after the carbon source and medium pH was modified. Scutellum-derived calli from mature seeds were co-cultivated with Agrobacterium tumefaciens strains EHA101 or LBA4404 that carried plasmid pAFT14, which contained the genes for beta-glucuronidase (gus) and hygromycin resistance (hpt). Finally, the transformation efficiency of Rojolele variety using A. tumefaciens strain EHA101 (pAFT14) was improved to about 23%, similar to that of the Japonica rice variety Nipponbare. The seed fertility of transgenic Rojolele was more than 90%. The copy number of the transgene varied from one to three copies in the T(0) transgenic lines. Both the gus and the hpt genes were inherited and expressed in the progeny.  相似文献   

6.
An Agrobacterium-mediated model transformation system was standardized for the wetland monocot Typha latifolia L. to achieve the long-term objective of introducing candidate genes for phytoremediation. Two binary plasmid vectors, pCAMBIA1301/EHA105 and pTOK233/LBA4404, both containing the gus (beta-glucuronidase) and hptII (hygromycin phosphotransferase II) genes, were used for transformation. Fifty-day-old 5 mg/l picloram-derived calli were cocultivated and selected on medium containing 20 mg/l or 40 mg/l hygromycin. Resistant calli were regenerated on medium supplemented with 5 mg/l 6-benzylaminopurine, with or without 20 mg/l or 40 mg/l hygromycin and with or without charcoal (10 g/l). Transient GUS activity in explants ranged between 28% and 36%. Hygromycin-resistant calli, selected after 3 months, showed stable GUS expression. A total of 46 plants were regenerated and established in the greenhouse; 13 showed stable GUS expression. Cocultivation of dark culture-derived calli, directly selected on regeneration medium containing 20 mg/l hygromycin and rooted on medium with 20 mg/l hygromycin was the best protocol. The addition of charcoal did not have any effect on regeneration. PCR and Southern analyses of transgenic calli and transgenic plants confirmed the presence of the introduced genes. In conclusion, T. latifolia could be genetically transformed by Agrobacterium tumefaciens.  相似文献   

7.
Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes   总被引:1,自引:0,他引:1  
An efficient procedure is described for transformation of calli of the monocotyledonous plant Alstroemeria by Agrobacterium rhizogenes. Calli were co-cultivated with A. rhizogenes strain A13 that harbored both a wild-type Ri-plasmid and the binary vector plasmid pIG121Hm, which included a gene for neomycin phosphotransferase II (NPTII) under the control of the nopaline synthase (NOS) promoter, a gene for hygromycin phosphotransferase (HPT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a gene for -glucuronidase (GUS) with an intron fused to the CaMV 35S promoter. Inoculated calli were plated on medium that contained cefotaxime to eliminate bacteria. Four weeks later, transformed cells were selected on medium that contained 20 mg L–1 hygromycin. A histochemical assay for GUS activity revealed that selection by hygromycin was complete after eight weeks. The integration of the T-DNA of the Ri-plasmid and pIG121Hm into the plant genome was confirmed by PCR. Plants derived from transformed calli were produced on half-strength MS medium supplemented with 0.1 mg L–1 GA3 after about 5 months of culture. The presence of the gusA, nptII, and rol genes in the genomic DNA of regenerated plants was detected by PCR and Southern hybridization, and the expression of these transgenes was verified by RT-PCR.  相似文献   

8.
该试验就石斛兰转化ACS(1-氨基环丙烷-1-羧酸合成酶)反义基因的不同筛选方法和筛选处理对抗性原球茎筛选的影响,以及石斛兰转基因植株的再生与鉴定进行研究.结果表明:(1)石斛兰原球茎经带有gus报告基因和ACS反义基因的农杆菌LBA4404侵染共培养5d后除菌,采用逐渐提高选择压浓度的延迟筛选,并在低选择压浓度下切割而高选择压浓度下不切割的处理方式为抗性原球茎的最佳筛选途径,抗性原球茎获得率可达14.97%.(2)抗性原球茎繁殖时应逐渐降低选择压浓度,且在低选择压浓度下进行切割处理,繁殖倍数达到1.15倍,且原球茎生长势好.(3)抗性原球茎在1/2 MS+0.5 mg/L 6-BA培养基中的分化率达到73.85%;107株无根小苗培养于1/2 MS+1.0 mg/L NAA+50.0 mg/L Km(卡那霉素)+100.0 mg/L Cef(头孢霉素)培养基中进行生根培养,共获得了13株具有卡那霉素抗性的转化植株,转化效率达到12.15%.(4)转化植株经报告基因产物GUS组织化学检测和gus的PCR检测,证实带ACS反义基因的T-DNA已整合进石斛兰基因组中,且转基因植株在形态上与未转基因植株无明显差别,3株转基因植株移栽2个月后均已成活.  相似文献   

9.
高赖氨酸蛋白基因导入水稻及可育转基因植株的获得   总被引:33,自引:0,他引:33  
构建了一个植物高效表达质粒,使来源于四棱豆(Psophocarpus tetragonolobus(L.)DC)的高赖氨酸蛋白基因(lys)受控于单子叶植物ubiqutin强启动子下表达。用基因枪法将其导入水稻(Oryza sativa L.)幼胚诱导的愈伤组织,经潮霉素抗性筛选,得到可育的再生植株。经PCR和Southem blotting检测,表明该基因已整合到水稻的基因组织。GUS组织化学染色表明转基因水稻植株的叶、茎和根中均有gus基因的表达。测定112株转基因水稻叶片中赖氨酸叶量,大部分植株有不同程度的提高,最高幅度为16.04%。  相似文献   

10.
Shoot apical meristem-derived calli were transformed with a hLF cDNA in an attempt to produce human lactoferrin (hLF) in transgenic cell suspension cultures of sweet potato [Ipomoea batatas (L.) Lam.]. Calli were bombarded with tungsten particles coated with the binary vector pLSM1 containing a hLF cDNA under the control of the 35S promoter and the neomycin phosphotransferase gene as a selection marker. Calli were then transferred to Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 100 mg dm−3 kanamycin. Kanamycin-resistant calli were selected at four-week intervals and subcultured. Cell suspension cultures were established in liquid MS medium with 4.52 μM 2,4-D. Southern and Northern blot analyses confirmed that hLF cDNA was incorporated into the plant genome and was properly expressed in the cells. ELISA analysis showed that transgenic cells produced hLF up to 3.2 μg mg−1 (total protein).  相似文献   

11.
小麦叶片愈伤组织及其再生植株的诱导   总被引:17,自引:0,他引:17  
小麦幼苗基部外植体在补加2,4-D的MS、N6、BA1(3)培养基上均可诱导出愈伤组织,2,4-D的最适浓度为2.0mg/L;愈伤组织的增殖速度与切段部位及基本培养基有关,其中在以MS补加2.0mg/L2,4-D的培养基上诱导出的愈伤组织增长速度最快;最后讨论了小麦愈伤组织幼苗诱导率低的原因及可能解决的方法。  相似文献   

12.
Agrobacterium-mediated genetic transformation of a phalaenopsis orchid   总被引:2,自引:0,他引:2  
 Genetically transformed plants of a phalaenopsis orchid [Doritaenopsis Coral Fantasy×Phalaenopsis (Baby Hat×Ann Jessica)] were regenerated after cocultivation of cell clumps with Agrobacterium tumefaciens strains LBA4404 (pTOK233) and EHA101 (pIG121Hm) that harbored genes for β-glucuronidase (GUS) and hygromycin resistance. The efficiency of transformation was markedly increased by 10 h cocultivation of cell clumps with A. tumefaciens that had been induced with 200 μm acetosyringone, and by inclusion of 500 μm acetosyringone in the cocultivation medium. Hygromycin-resistant cell clusters (0.5–3 mm in diameter) were selected from the infected cell clumps after 4–6 weeks of culture on agar (8 g/l)-solidified new Dogashima medium (NDM) containing 20 g/l sucrose, 0.1 mg/l naphthaleneacetic acid, 1.0 mg/l benzyladenine (BA), 50 mg/l hygromycin and 300 mg/l cefotaxime. The cell clusters proliferated 4 weeks after transfer onto the same medium. To induce callus greening, the carbon source was changed from sucrose to maltose. The green calli obtained produced protocorm-like bodies (PLBs) after 4 weeks of culture on phytohormone-free NDM medium. Regeneration of transgenic plantlets was enhanced by incubating PLBs on NDM medium supplemented with 0.1 mg/l abscisic acid, followed by partial desiccation for 10–30 min. Successful transformation was confirmed by histochemical GUS assay, PCR analysis and Southern hybridization of transformants. With this transformation system, more than 100 hygromycin-resistant phalaenopsis plantlets were produced about 7 months following infection of the cell aggregates. Received: 10 November 1998 / Revision received: 4 June 1999 / Accepted: 22 June 1999  相似文献   

13.
Protocorms of orchid (Dendrobium hybrid) were transformed by microprojectile bombardment with a helium-pressured PDS 1000 particle gun. Gold particles coated with plasmid DNA containing ß-glucuronidase (GUS) and hygromycin phosphotransferase (Hpt) marker genes were used. Potentially transformed tissues were identified by active growth on MS medium supplemented with 50mg l-1 hygromycin. After 4–6 months of continuous selection, 15 hygromycin-resistant lines were recovered. Integration of transgenes into the genome of the transformed protocorms and plantlets were confirmed by GUS histochemical assay and Southern blot hybridization. The transgenic protocorms have gone through propagation for more than 8 months and maintained their transgenic characters. These results indicate that we have established a system for orchid transformation in a relatively high frequency and the transgenes are stably expressed in the transgenic plants.  相似文献   

14.
Switchgrass (Panicum virgatum L.) has been developed into an important biofuel crop. Embryogenic calli induced from caryopses or inflorescences of the lowland switchgrass cultivar Alamo were used for Agrobacterium-mediated transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin as the selection agent. Embryogenic calli were infected with Agrobacterium tumefaciens strain EHA105. Calli resistant to hygromycin were obtained after 5 to 8 weeks of selection. Soil-grown transgenic switchgrass plants were obtained 4 to 5 months after Agrobacterium infection. The transgenic nature of the regenerated plants was demonstrated by PCR, Southern blot hybridization analysis, and GUS staining. T1 progeny were obtained after reciprocal crosses between transgenic and untransformed control plants. Molecular analyses of the T1 progeny revealed various patterns of segregation. Transgene silencing was observed in the progeny with multiple inserts. Interestingly, reversal of the expression of the silenced transgene was found in segregating progeny with a single insert.  相似文献   

15.
16.
Insect-resistant transgenic cabbage plants and their progenies   总被引:3,自引:0,他引:3  
An insecticidal crystal protein gene of Bacillus thuringiensis was transferred into cabbage genome with the method of Agrobacterium infection. Cotyledons with petioles as explants were cocultivated with Agrobacterial suspension. Calli generated at the basis of petiole were subjected to selection on the MS medium containing 15-30 mg/L kanamycin (Km). About 5% explants produced calli growing continuously on the selective medium. Green shoots appeared on these calli when they were transplanted onto medium with Km and 6-BA for plant differentiation. The shoots were separated and cultivated on medium with kanamycin. About 80% shoots were rooted. Non-transformed control calli could not give normal shoots and roots and brownized and died gradually. Larvae of Pieris rapae showed poisonous symptoms: growth inhibition and mortality when fed with the leaf of the transgenic plants. About 80% of regenerated plants showed positive hybridization bands when their DNA were probed with crystal protein sequence of Bacillu  相似文献   

17.
We investigated the optimal levels of growth regulators, culture media, and pH on callus growth and organogenesis of in-vitro cultured ‘Kyoho’ grapes. Calli were induced by culturing leaf blades on an MS basal medium supplemented with 1 mg/IL BA and 0.01 mg/L 2,4-D. In addition, calli originating from the exocarp and mesocarp of grape fruits devel-oped on MS media supplemented with 0.1 mg/L IAA, NAA, or 2,4-D, or with 0.2 mg/L BA. In testing the potential for plant regeneration from shoot tips on various media, we found that the Nitsch medium, with I mg/L BA, was optimal for caulogenesis. The type of shoot development depended on the pH of the medium, with vigorous multiple-shoot devel-opment occurring at pH 6.0, and single shoots forming at pH 5.0. Finally, we were able to obtain rooted seedlings from the regenerated shoots that had been cultured on 1/4-strength Nitsch medium supplemented with 0.03 mg/L NAA.  相似文献   

18.
We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile.  相似文献   

19.
Russian wildrye (Psathyrostachys juncea (Fisch.) Nevski) is a cool-season forage species well adapted to semi-arid climates. We are interested in developing biotechnological methods to improve this monocot forage species. Single genotype-derived embryogenic suspension cultures were established from the Russian wildrye cultivar Bozoisky-Select, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric -glucuronidase (gusA) gene was co-transformed with hph. Resistant calli were obtained from 29% of the bombarded dishes after selection with 200 mg/l hygromycin. Plants were regenerated from 45% of the hygromycin resistant calli. Thirty-six transgenic Russian wildrye plants were recovered after microprojectile bombardment of suspension cells and subsequent hygromycin selection. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis using undigested and digested genomic DNA samples. When a second gene (gusA) was co-transformed with hph, a reasonably high co-transformation frequency of 78% was observed. Transgenic expression of gusA was confirmed by GUS staining of shoot and leaf tissues. Fertile transgenic plants were obtained after two winters of vernalization under field conditions. This is the first report on the generation of transgenic plants in Russian wildrye.  相似文献   

20.
基因枪法转基因水稻中hpt基因稳定遗传   总被引:18,自引:3,他引:15  
基因枪转化将潮霉素磷酸转移酶基因(hpt)导入粳稻品种77170,获得可育的转基因植株,研究外源基因遗传的稳定性。自交后代(T1和T2)经潮霉素筛选获得抗性植株和敏感植株,分子鉴定结果表明抗性植株带有hpt基因,而敏感植株中没有hpt基因存在。T1和T2代中潮霉素抗性表现为显性单基因位点的遗传方式,符合孟德尔分离规律,并得到分子鉴定结果的证实。Southern杂交结果显示,hpt基因多拷贝整合在水  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号