首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Motivated by the design of an integrated CMOS-based detection platform, a simulation model for CCD and CMOS imager-based luminescence detection systems is developed. The model comprises four parts. The first portion models the process of photon flux generation from luminescence probes using ATP-based and luciferase label-based assay kinetics. An optics simulator is then used to compute the incident photon flux on the imaging plane for a given photon flux and system geometry. Subsequently, the output image is computed using a detailed imaging sensor model that accounts for photodetector spectral response, dark current, conversion gain, and various noise sources. Finally, signal processing algorithms are applied to the image to enhance detection reliability and hence increase the overall system throughput. To validate the model, simulation results are compared to experimental results obtained from a CCD-based system that was built to emulate the integrated CMOS-based platform.  相似文献   

2.
A new two‐dimensional fluorescence sensor system was developed for in‐line monitoring of mammalian cell cultures. Fluorescence spectroscopy allows for the detection and quantification of naturally occurring intra‐ and extracellular fluorophores in the cell broth. The fluorescence signals correlate to the cells’ current redox state and other relevant process parameters. Cell culture pretests with twelve different excitation wavelengths showed that only three wavelengths account for a vast majority of spectral variation. Accordingly, the newly developed device utilizes three high‐power LEDs as excitation sources in combination with a back‐thinned CCD‐spectrometer for fluorescence detection. This setup was first tested in a lab design of experiments study with process relevant fluorophores proving its suitability for cell culture monitoring with LOD in the μg/L range. The sensor was then integrated into a CHO‐K1 cell culture process. The acquired fluorescence spectra of several batches were evaluated using multivariate methods. The resulting batch evolution models were challenged in deviating and “golden batch” validation runs. These first tests showed that the new sensor can trace the cells’ metabolic state in a fast and reliable manner. Cellular distress is quickly detected as a deviation from the “golden batch”.  相似文献   

3.
A longstanding goal in neuroscience has been to develop techniques for imaging the voltage dynamics of genetically defined subsets of neurons. Optical sensors of transmembrane voltage would enhance studies of neural activity in contexts ranging from individual neurons cultured in vitro to neuronal populations in awake-behaving animals. Recent progress has identified Archaerhodopsin (Arch) based sensors as a promising, genetically encoded class of fluorescent voltage indicators that can report single action potentials. Wild-type Arch exhibits sub-millisecond fluorescence responses to trans-membrane voltage, but its light-activated proton pump also responds to the imaging illumination. An Arch mutant (Arch-D95N) exhibits no photocurrent, but has a slower, ~40 ms response to voltage transients. Here we present Arch-derived voltage sensors with trafficking signals that enhance their localization to the neural membrane. We also describe Arch mutant sensors (Arch-EEN and -EEQ) that exhibit faster kinetics and greater fluorescence dynamic range than Arch-D95N, and no photocurrent at the illumination intensities normally used for imaging. We benchmarked these voltage sensors regarding their spike detection fidelity by using a signal detection theoretic framework that takes into account the experimentally measured photon shot noise and optical waveforms for single action potentials. This analysis revealed that by combining the sequence mutations and enhanced trafficking sequences, the new sensors improved the fidelity of spike detection by nearly three-fold in comparison to Arch-D95N.  相似文献   

4.
Sensors based on surface plasmon resonance (SPR) allow rapid, label-free, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light into a thin metallic film. Although SPR is not intrinsically a radiative process, when the metallic coating which support the plasmonic wave exhibits a significant surface roughness, the surface plasmon can itself couple to the local photon states, and emit light. Here we show that using silver coated optical fibres, this novel SPR transducing mechanism offers significant advantages compare to traditional reflectance based measurements such as lower dependency on the metallic thickness and higher signal to noise ratio. Furthermore, we show that more complex sensor architectures with multiple sensing regions scattered along a single optical fibre enable multiplexed detection and dynamic self referencing of the sensing signal. Moreover, this alternative approach allows to combine two different sensing technologies, SPR and fluorescence sensing within the same device, which has never been demonstrated previously. As a preliminary proof of concept of potential application, this approach has been used to demonstrate the detection of the seasonal influenza A virus.  相似文献   

5.
Time‐correlated single photon counting is the “gold‐standard” method for fluorescence lifetime measurements and has demonstrated potential for clinical deployment. However, the translation of the technology into clinic is hindered by the use of ultrasensitive detectors, which make the fluorescence acquisition impractical with bright lighting conditions such as in clinical settings. We address this limitation by interleaving periodic fluorescence detection with synchronous out‐of‐phase externally modulated light source, thus guaranteeing specimen illumination and a fluorescence signal free from bright background light upon temporal separation. Fluorescence lifetime maps are generated in real‐time from single‐point measurements by tracking a reference beam and using the phasor approach. We demonstrate the feasibility and practicality of this technique in a number of biological specimens, including real‐time mapping of degraded articular cartilage. This method is compatible and can be integrated with existing clinical microscopic, endoscopic and robotic modalities, thus offering a new pathway towards label‐free diagnostics and surgical guidance in a number of clinical applications.  相似文献   

6.
The mechanomyographic (MMG) signal analysis has been performed during single motor unit (MU) contractions of the rat medial gastrocnemius muscle. The MMG has been recorded as a muscle surface displacement by using a laser distance sensor. The profiles of the MMG signal let to categorize these signals for particular MUs into three classes. Class MMG-P (positive) comprises MUs with the MMG signal similar to the force signal profile, where the distance between the muscle surface and the laser sensor increases with the force increase. The class MMG-N (negative) has also the MMG profile similar to the force profile, however the MMG is inverted in comparison to the force signal and the distance measured by using laser sensor decreases with the force increase. The third class MMG-M (mixed) characterize the MMG which initially increases with the force increases and when the force exceeds some level it starts to decrease towards the negative values. The semi-pennate muscle model has been proposed, enabling estimation of the MMG generated by a single MU depending on its localization. The analysis have shown that in the semi-pennate muscle the localization of the MU and the relative position of the laser distance sensor determine the MMG profile and amplitude. Thus, proposed classification of the MMG recordings is not related to the physiological types of MUs, but only to the MU localization and mentioned sensor position. When the distance sensor is located over the middle of the muscle belly, a part of the muscle fibers have endings near the location of the sensor beam. For the MU MMG of class MMG-N the deflection of the muscle surface proximal to the sensor mainly influences the MMG recording, whereas for the MU MMG class MMG-P, it is mainly the distal muscle surface deformation. For the MU MMG of MMG-M type the effects of deformation within the proximal and distal muscle surfaces overlap. The model has been verified with experimental recordings, and its responses are consistent and adequate in comparison to the experimental data.  相似文献   

7.
Mercury ions (Hg(2+)) are a highly toxic and ubiquitous pollutants requiring rapid and sensitive on-site detection methods in the environment and foods. Herein, we report an envanescent wave DNA-based biosensor for rapid and very sensitive Hg(2+) detection based on a direct structure-competitive detection mode. In this system, a DNA probe covalently immobilized onto a fiber optic sensor contains a short common oligonucleotide sequences that can hybidize with a fluorescently labeled complementary DNA. The DNA probe also comprises a sequence of T-T mismatch pairs that binds with Hg(2+) to form a T-Hg(2+)-T complex by folding of the DNA segments into a hairpin structure. With a structure-competitive mode, a higher concentration of Hg(2+) leads to less fluorescence-labeled cDNA bound to the sensor surface and thus to lower fluorescence signal. The total analysis time for a single sample, including the measurement and surface regeneration, was under 6 min with a Hg(2+) detection limit of 2.1 nM. The high specificity of the sensor was demonstrated by evaluating its response to a number of potentially interfering metal ions. The sensor's surface can be regenerated with a 0.5% SDS solution (pH 1.9) over 100 times with no significant deterioration of performance. This platform is potentially applicable to detect other heavy metal ions or small-molecule analytes for which DNA/aptamers can be used as specific sensing probes.  相似文献   

8.
Unconstrained system that measures physiological information as skin temperatures and heart rate per unit time of a human subject was developed. The system contained portable device included memory control unit, instrumentation unit, timer and batteries, read-out unit, test unit and verify unit. Total number of data and channels, and interval were selected by switches in the memory control unit. The data from the instrumentation unit were transferred to memory control unit and stored in the Erasable Programmable ROM (EPROM). After measurement, EPROM chip was taken off the memory control unit and put on the read-out unit which transferred the data to the microcomputer. The data were directly calculated and analyzed by microcomputer. In application of the instrumentation unit, 8-channel skin thermometer was developed and tested. After amplification, 8 analog signals were multiplexed and converted into the binary codes. The digital signals were sequentially transferred to memory control unit and stored in the EPROM under controlled signal. The accuracy of the system is determined primarily by the accuracy of the sensor of instrumentation unit. The overall accuracy of 8-channel skin thermometer is conservatively stated within 0.1 degree C. This may prove to be useful in providing an objective measurement of human subjects, and can be used in studying environmental effect for human body and sport activities in a large population setting.  相似文献   

9.
The depth of two‐photon fluorescence imaging in turbid media can be significantly enhanced by the use of the here described fluorescence detection method that allows to efficiently collect scattered fluorescence photons from a wide area of the turbid sample. By using this detector we were able to perform imaging of turbid samples, simulating brain tissue, at depths up to 3 mm, where the two‐photon induced fluorescence signal is too weak to be detected by means used in conventional two‐photon microscopy. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In flow cytometry cell autofluorescence often interferes with efforts to measure low levels of bound fluorescent antibody. We have developed a way to correct for autofluorescence on a cell-by-cell basis. This results in improved estimates of real staining and better separation of the fluorescence histograms of stained and non-stained cells. Using a single laser, two-color fluorescence measurement system and two-color compensation electronics, autofluorescence and one fluorescent reagent are measured (rather than two fluorescent reagents). With fluorescein-conjugated antibodies the signal in the 515 to 555 nm range (green fluorescence) includes both fluorescein emission and part of the cellular autofluorescence. In the cases we have investigated, autofluorescence collected at wavelengths above 580 nm ("red") is well correlated with the green autofluorescence of the cells. A fraction of this red fluorescence is subtracted from the green fluorescence to produce an adjusted fluorescein output on which unstained cells have zero average signal. Use of this method facilitates the selection of rare cells transfected with surface antigen genes. Culture conditions affect the level of autofluorescence and the balance between red and green autofluorescence. When applied with fluorescein-conjugated reagents, the technique is compatible with the use of propidium iodide for live/dead cell discrimination.  相似文献   

11.
Time correlated single photon counting measurements of tryptophan (Trp) fluorescence intensity decay and other spectroscopic studies were performed on glutamine-binding protein (GlnBP) from Escherichia coli. Using site-specifically mutated forms of the protein in which tyrosine (Tyr) and phenylalanine (Phe) substitute for the Trp residues at positions 32 and 220, we have examined whether wild-type (Wtyp) intensity decay components may be assigned to specific Trp residues. Results indicate that: (a) two exponential intensity decay components are recovered from the Wtyp protein (6.16 ns, 0.46 ns); (b) the long decay component arises from Trp-220 and comprises greater than 90% of the total fluorescence emission; (c) the short component arises from Trp-32 and is highly quenched; (d) all four single-Trp mutants exhibit multiexponential intensity decays, yet equimolar mixtures of two single-Trp mutants yield only two decay components which are virtually indistinguishable from the Wtyp protein; (e) the recovery of additional components in protein mixtures is obscured by statistical noise inherent in the technique of photon counting; (f) various spectroscopic measurements suggest that Trp-Trp interactions occur in the Wtyp protein, but the Wtyp intensity decay may be closely approximated by a linear combination of intensity decays from single-Trp mutants; and (g) inferences derived independently from fluorescence and NMR spectroscopy which pertain to the presence of Trp-Trp interactions and the relative solvent exposure of the two Trp residues are in agreement.  相似文献   

12.
13.
14.
Yu Q  Zhao S  Ye F  Li S 《Analytical biochemistry》2007,369(2):187-191
A new analytical method based on capillary electrophoresis (CE) separation and optical fiber light-emitting diode (LED)-induced fluorescence detection has been developed for the determination of octopamine. Naphthalene-2,3-dicarboxaldehyde (NDA) was used for precolumn derivatization of octopamine. The separation and determination of the derivative was performed using a laboratory-built CE system with an optical fiber LED-induced fluorescence detector. Optimal separation was obtained at 20 kV using a background electrolyte solution consisting of 25 mM sodium borate (pH 9.2). High sensitivity detection was achieved by the optical fiber LED-induced fluorescence detection using a purple LED as the excitation source. The limit of detection (signal/noise=3) for octopamine was 5.0 x 10(-9)M. A calibration curve ranging from 1.0 x 10(-8) to 5.0 x 10(-7)M was shown to be linear. Using this method, the levels of octopamine in human plasma from healthy donors were determined.  相似文献   

15.
This paper presents a new method for the measurement of inhibitory effects in wastewater treatment plants on the basis of a continuous measurement of the microbial respiration product (CO(2)). The microbial sensor developed for this purpose consists of a small conical fluidized bed reactor connected to a cylindrical chamber that comprises part of the sample recirculation system. Activated sludge microbes are immobilized on spherical (diameter=1-2 mm) reticulated sinter glass carriers. Pure oxygen is supplied via the cylindrical chamber in order to sustain a highly dense population of microbial mass. The mean hydraulic retention time in the microbial sensor ranges between 30 and 40 min, while temperature is maintained at 30 degrees C, and pH 6.4. Carbon dioxide in the off-gas, which reflects the microbial activity, is continuously analyzed by means of an infrared analyzer. Inhibition of microbial activity (toxicity) can be determined as the mean percent reduction in carbon dioxide concentration. Several substances were tested and proved toxic to the microbes. With this microbial sensor, early detection of toxic substances becomes feasible, preventing them from entering an activated sludge unit operation.  相似文献   

16.
Multiwavelength detection of laser induced fluorescence for dideoxynucleotide DNA sequencing with four different fluorophores and separation by capillary gel electrophoresis is described. A cryogenically cooled, low readout noise, 2-dimensional charge-coupled device is used as a detector for the on-line, on-column recording of emission spectra. The detection system has no moving parts and provides wavelength selectivity on a single detector device. The detection limit of fluorescently labeled oligonucleotides meets the high sensitivity requirements for capillary DNA sequencing largely due to the efficient operation of the CCD detector with a 94% duty cycle. Using the condition number as a selectivity criterion, multiwavelength detection provides better analytical selectivity than detection with four bandpass filters. Monte Carlo studies and analytical estimates show that base assignment errors are reduced with peak identification based on entire emission spectra. High-speed separation of sequencing samples and the treatment of the 2-dimensional electropherogram data is presented. Comparing the DNA sequence of a sample separated by slab gel electrophoresis with sequence from capillary gel electrophoresis and multiwavelength detection we find no significant difference in the amount of error attributable to the instrumentation.  相似文献   

17.
The present study demonstrates the application of the Unsupervised Spike Sorting algorithm (USS) to separation of multi-unit recordings and investigation of neuronal activity patterns in the subthalamic nucleus (STN). This nucleus is the main target for deep brain stimulation (DBS) in Parkinsonian patients. The USS comprises a fast unsupervised learning procedure and allows sorting of multiple single units, if any, out of a bioelectric signal. The algorithm was tested on a simulated signal with different levels of noise and with application of Time and Spatial Adaptation (TSA) algorithm for denoising. The results of the test showed a good quality of spike separation and allow its application to investigation of neuronal activity patterns in a medical application. One hundred twenty-four single channel multi-unit records from STN of 6 Parkinsonian patients were separated with USS into 492 single unit trains. Auto- and crosscorrellograms for each unit were analyzed in order to reveal oscillatory, bursting and synchronized activity patterns. We analyzed separately two brain hemispheres. For each hemisphere the percentage of units of each activity pattern were calculated. The results were compared for the first and the second operated hemispheres of each patient and in total.  相似文献   

18.
We describe the use of phase-sensitive detection of fluorescence to resolve the lifetimes and fractional intensities from multi-component fluorescence samples, using data obtained at a single modulation frequency. Phase-sensitive spectra of the mixture are recorded at arbitrarily chosen detector phase angles. The steady-state spectrum of each component must be known. The phase-sensitive spectra are fitted, using a nonlinear least-squares algorithm, to obtain the lifetimes and fractional intensities of each fluorophore in the mixture. Simulations for two- and three-component mixtures are presented to illustrate how the resolution is affected by spectral overlap and lifetime separation. Experimentally, we resolved two- and three-component mixtures of protein-like fluorophores (N-acetyl-L-tyrosinamide, N-acetyl- L-tryptophanamide, indole and 2,3-dimethylindole) using data collected at 30 MHz. These fluorophores have closely spaced lifetimes of 1.5, 2.9, 4.5 and 4.3 ns, respectively, and display extensive spectral overlap. These results demonstrate that phase-sensitive spectra, recorded at only one modulation frequency with a standard phase fluorometer, can be used to resolve multi-component emissions.  相似文献   

19.
This paper presents a signal process method for DNA segments separation in micro-channel electrophoresis. It is developed and optimized by using a laser induced fluorescence (LIF) based detection system. In this detection system, signal is sampled and processed through a novel signal process module. The results show that this signal process method provides good signal-to-noise ratios and lower limit of detection (LOD).  相似文献   

20.
Ukaegbu UE  Henery S  Rosenzweig AC 《Biochemistry》2006,45(34):10191-10198
Methane monooxygenase (MMO) enzymes catalyze the oxidation of methane to methanol in methanotrophic bacteria. Several strains of methanotrophs, including Methylococcus capsulatus (Bath), express a membrane-bound or particulate MMO (pMMO) at high copper-to-biomass ratios and a soluble MMO (sMMO) form when copper is limited. The mechanism of this "copper switch" is not understood. The mmoS gene, located downstream of the sMMO operon, encodes a sensor protein that is part of a two-component signaling system and has been proposed to play a role in the copper switch. MmoS from M. capsulatus (Bath) has been cloned, expressed, and purified. The purified protein is a tetramer of molecular mass 480 kDa. Optical spectra indicate that MmoS contains a flavin cofactor, identified as flavin adenine dinucleotide (FAD) by fluorescence spectroscopy and chromatographic analysis. The redox potential of the MmoS-bound FAD, which binds within the N-terminal PAS-PAC domains, is -290 +/- 2 mV at pH 8.0 and 25 degrees C. Despite extensive efforts, MmoS could not be loaded with Cu(I) or Cu(II), indicating that MmoS does not sense copper directly. These data suggest that MmoS functions as a redox sensor and provide new insight into the copper-mediated regulation of sMMO expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号