首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   734893篇
  免费   87944篇
  国内免费   372篇
  2016年   7966篇
  2015年   11160篇
  2014年   13095篇
  2013年   19047篇
  2012年   20880篇
  2011年   21192篇
  2010年   14102篇
  2009年   13220篇
  2008年   19127篇
  2007年   19882篇
  2006年   18662篇
  2005年   18112篇
  2004年   17878篇
  2003年   17322篇
  2002年   16722篇
  2001年   30951篇
  2000年   31457篇
  1999年   25123篇
  1998年   8923篇
  1997年   9485篇
  1996年   9137篇
  1995年   8901篇
  1994年   8871篇
  1993年   8795篇
  1992年   22014篇
  1991年   21822篇
  1990年   21240篇
  1989年   20844篇
  1988年   19401篇
  1987年   18680篇
  1986年   17363篇
  1985年   17602篇
  1984年   14814篇
  1983年   12866篇
  1982年   10015篇
  1981年   9393篇
  1980年   8830篇
  1979年   14599篇
  1978年   11344篇
  1977年   10632篇
  1976年   10001篇
  1975年   11086篇
  1974年   11772篇
  1973年   11568篇
  1972年   10746篇
  1971年   9594篇
  1970年   8445篇
  1969年   8096篇
  1968年   7427篇
  1967年   6420篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
There is a diverse range of microbiological challenges facing the food, healthcare and clinical sectors. The increasing and pervasive resistance to broad‐spectrum antibiotics and health‐related concerns with many biocidal agents drives research for novel and complementary antimicrobial approaches. Biofilms display increased mechanical and antimicrobial stability and are the subject of extensive research. Cold plasmas (CP) have rapidly evolved as a technology for microbial decontamination, wound healing and cancer treatment, owing to the chemical and bio‐active radicals generated known collectively as reactive oxygen and nitrogen species. This review outlines the basics of CP technology and discusses the interactions with a range of microbiological targets. Advances in mechanistic insights are presented and applications to food and clinical issues are discussed. The possibility of tailoring CP to control specific microbiological challenges is apparent. This review focuses on microbiological issues in relation to food‐ and healthcare‐associated human infections, the role of CP in their elimination and the current status of plasma mechanisms of action.  相似文献   
3.
4.
5.
Podosphaera leucotricha is the causal agent of powdery mildew (PM) in apple. To reduce the amount of fungicides required to control this pathogen, the development of resistant apple cultivars should become a priority. Resistance to PM was achieved in various crops by knocking out specific members of the MLO gene family that are responsible for PM susceptibility (S-genes). In apple, the knockdown of MdMLO19 resulted in PM resistance. However, since gene silencing technologies such as RNAi are perceived unfavorably in Europe, a different approach that exploits this type of resistance is needed. This work evaluates the presence of non-functional naturally occurring alleles of MdMLO19 in apple germplasm. The screening of the re-sequencing data of 63 apple individuals led to the identification of 627 single nucleotide polymorphisms (SNPs) in five MLO genes (MdMLO5, MdMLO7, MdMLO11, MdMLO18, and MdMLO19), 127 of which were located in exons. The T-1201 insertion of a single nucleotide in MdMLO19 caused the formation of an early stop codon, resulting in a truncated protein lacking 185 amino acids, including the calmodulin-binding domain. The presence of the insertion was evaluated in 115 individuals. It was heterozygous in 64 and homozygous in 25. Twelve of the 25 individuals carrying the insertion in homozygosity were susceptible to PM. After barley, pea, cucumber, and tomato, apple would be the fifth species for which a natural non-functional mlo allele has been found.  相似文献   
6.
Crop improvement is a long-term, expensive institutional endeavor. Genomic selection (GS), which uses single nucleotide polymorphism (SNP) information to estimate genomic breeding values, has proven efficient to increasing genetic gain by accelerating the breeding process in animal breeding programs. As for crop improvement, with few exceptions, GS applicability remains in the evaluation of algorithm performance. In this study, we examined factors related to GS applicability in line development stage for grain yield using a hard red winter wheat (Triticum aestivum L.) doubled-haploid population. The performance of GS was evaluated in two consecutive years to predict grain yield. In general, the semi-parametric reproducing kernel Hilbert space prediction algorithm outperformed parametric genomic best linear unbiased prediction. For both parametric and semi-parametric algorithms, an upward bias in predictability was apparent in within-year cross-validation, suggesting the prerequisite of cross-year validation for a more reliable prediction. Adjusting the training population’s phenotype for genotype by environment effect had a positive impact on GS model’s predictive ability. Possibly due to marker redundancy, a selected subset of SNPs at an absolute pairwise correlation coefficient threshold value of 0.4 produced comparable results and reduced the computational burden of considering the full SNP set. Finally, in the context of an ongoing breeding and selection effort, the present study has provided a measure of confidence based on the deviation of line selection from GS results, supporting the implementation of GS in wheat variety development.  相似文献   
7.
The effect of exercise-induced oxidative stress on health and aging is not clearly explained. This study examined the effects of habitual sport practice, age, and submaximal exercise on the blood markers of oxidative stress, muscle damage, and antioxidant response. Seventy-two healthy men were grouped by their habitual sport practice: inactive (<1.5 h/week), recreational (3–8 h/week), and trained athletes (>8 h/week), and further divided by age: young (18–25 years), adult (40–55 years), and senior (>55 years). Blood samples were collected at rest and after submaximal effort. Hydroperoxides and superoxide dismutase, glutathione peroxidase, and catalase activities were measured by spectrophotometry. Nuclear DNA damage was analyzed by comet assay. The alpha-actin release was analyzed by Western blot. Alpha-tocopherol, retinol, and coenzyme-Q10 were quantified by high-performance liquid chromatography analysis. Data was analyzed through a factorial ANOVA and the Bonferroni post hoc test. Lipid peroxidation increased significantly with age and submaximal effort (p?<?0.05). However, the trained athlete group presented lower lipid peroxidation compared with the recreational group (MD?=?2.079, SED?=?0.58, p?=?0.002) and inactive group (MD?=?1.979, SED?=?0.61, p?=?0.005). Trained athletes showed significant higher alpha-actin levels (p?<?0.001) than the other groups. Recreational group showed lower nuclear DNA damage than trained athletes (MD?=?3.681, SED?=?1.28, p?=?0.015). Nevertheless, the inactive group presented significantly higher superoxide dismutase and catalase (p?<?0.05) than the other groups. Data suggested that habitual competitive training practice could prevent age-related increases of plasma lipid peroxidation, which, according with our results, cannot be entirely attributed to blood antioxidant defense systems.  相似文献   
8.
9.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
10.
  • Studies on plant electrophysiology are mostly focused on specific traits of single cells. Inspired by the complexity of the signalling network in plants, and by analogy with neurons in human brains, we sought evidence of high complexity in the electrical dynamics of plant signalling and a likely relationship with environmental cues.
  • An EEG‐like standard protocol was adopted for high‐resolution measurements of the electrical signal in Glycine max seedlings. The signals were continuously recorded in the same plants before and after osmotic stimuli with a ?2 MPa mannitol solution. Non‐linear time series analyses methods were used as follows: auto‐correlation and cross‐correlation function, power spectra density function, and complexity of the time series estimated as Approximate Entropy (ApEn).
  • Using Approximate Entropy analysis we found that the level of temporal complexity of the electrical signals was affected by the environmental conditions, decreasing when the plant was subjected to a low osmotic potential. Electrical spikes observed only after stimuli followed a power law distribution, which is indicative of scale invariance.
  • Our results suggest that changes in complexity of the electrical signals could be associated with water stress conditions in plants. We hypothesised that the power law distribution of the spikes could be explained by a self‐organised critical state (SOC) after osmotic stress.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号