首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Isolation of pure beta cells of the rat pancreas was achieved employing counterflow sedimentation technique (CST) followed by density gradient centrifugation technique (DGCT). The proportion of non-endocrine cells to beta cells was minimal (1 acinar cell in 296 beta cells, and 1 duct cell in 300 beta cells) with total absence of alpha and delta cells. Oxidation of D-(U-14C) glucose to 14CO2 by the isolated beta cells was linear to time. Glucagon (1, 5, or 10 nM) or arginine (1, 5 or 10 mM) produced concentration dependent insulin secretion. Thus, a highly purified preparation of isolated beta cells of rat pancreas could be obtained with excellent morphologic, metabolic and functional integrity.  相似文献   

2.
《The Journal of cell biology》1986,103(6):2353-2365
We have studied the onset of secretory responsiveness to cholecystokinin (CCK) during development of the rat exocrine pancreas. Although acinar cells of the fetal pancreas (1 d before birth) are filled with zymogen granules containing the secretory protein, alpha- amylase, the rate of amylase secretion from pancreatic lobules incubated in vitro was not increased in response to CCK. In contrast, the rate of CCK-stimulated amylase discharge from the neonatal pancreas (1 d after birth) was increased four- to eightfold above that of the fetal gland. The postnatal amplification of secretory responsiveness was not associated with an increase in the number or cell surface expression of 125I-CCK binding sites. When 125I-CCK-33 binding proteins were analyzed by affinity crosslinking, two proteins of Mr 210,000 and 100,000-160,000 were labeled specifically in both fetal and neonatal pancreas. To determine if cell surface receptors for CCK in the fetal pancreas are functional and able to generate a rise in the cytosolic [Ca++], we measured 45Ca++ efflux from tracer-loaded lobules. 45Ca++ efflux from both fetal and neonatal pancreas was comparably increased by CCK, indicating CCK-induced Ca++ mobilization and elevated cytosolic [Ca++]. The Ca++ ionophore A23187 also stimulated the rate of 45Ca++ extrusion from pancreas of both ages. Increased amylase secretion occurred concurrently with A23187-stimulated 45Ca++ efflux in neonatal pancreas, but not in the fetal gland. A23187 in combination with dibutyryl cAMP potentiated amylase release from the neonatal gland, but not from fetal pancreas. Similarly, the protein kinase C activator, phorbol dibutyrate, did not increase the rate of secretion from the fetal gland when added alone or in combination with A23187 or CCK. We suggest that CCK-receptor interaction in the fetal pancreas triggers intracellular Ca++ mobilization. However, one or more signal transduction events distal to Ca++ mobilization have not yet matured. The onset of secretory response to CCK that occurs postnatally may depend on amplification of these transduction events.  相似文献   

3.
In this study, AR42J pancreatic acinar cells were used to investigate if glucagon-like peptide-1 (GLP-1) or glucagon might influence amylase release and acinar cell function. We first confirmed the presence of GLP-1 receptors on AR42J cells by reverse trasncriptase-polymerase chain reaction (RT-PCR), Western blotting, and partial sequencing analysis. While cholecystokinin (CCK) increased amylase release from AR42J cells, GLP-1, alone or in the presence of CCK, had no effect on amylase release but both CCK and GLP-1 increased intracellular calcium. Similar to GLP-1, glucagon increased both cyclic adenosine monophosphate (cAMP) and intracellular calcium in AR42J cells but it actually decreased CCK-mediated amylase release (n = 20, P < 0.01). CCK stimulation resulted in an increase in tyrosine phosphorylation of several cellular proteins, unlike GLP-1 treatment, where no such increased phosphorylation was seen. Instead, GLP-1 decreased such protein phosphorylations. Genestein blocked CCK-induced phosphorylation events and amylase secretion while vanadate increased amylase secretion. These results provide evidence that tyrosine phosphorylation is necessary for amylase release and that signaling through GLP-1 receptors does not mediate amylase release in AR42J cells. J. Cell. Physiol. 181:470-478, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

4.
This study investigates the effects of the islet hormones insulin (Ins), glucagon (Glu), and somatostatin (Som) with nerve stimulation (EFS) acetylcholine (ACh) and cholecytokinin-octapeptide (CCK-8) on amylase secretion and intracellular free calcium concentration [Ca(2+)](i) in the pancreas of age-matched control and diabetic rats. Either Ins, Glu or Som elicited small increases in amylase secretion from the pancreas of age-matched control animals compared to a much larger increase in amylase secretion with either EFS, ACh or CCK-8. Combining the islet hormones with either EFS, ACh or CCK-8 resulted in marked potentiation of amylase output. In the diabetic pancreas, the islet hormones had no effect on amylase secretion compared to diabetic control. Moreover, either EFS, ACh or CCK-8 evoked a much smaller increase in amylase output compared to age-matched control. In addition, the islet hormones failed to potentiate the secretory effects of either EFS, ACh or CCK-8. In fura-2 loaded acinar cells from age-matched control pancreas either Ins or Glu elicited a small increase in [Ca(2+)](i) whereas Som had no effect. Both ACh and CCK-8 evoked large increases in [Ca(2+)](i) compared to control. Combining either Ins, Glu or Som with either ACh or CCK-8 resulted in a marked elevation in [Ca(2+)](i) compared to the responses obtained with either the islet hormones, ACh or CCK-8 alone. In diabetic fura-2 loaded pancreatic acinar cells, the islet hormones had no effect on [Ca(2+)](i) compared to control and moreover, the responses were much smaller than those obtained in acinar cells from age-matched control. Both ACh and CCK-8 induced large increases in [Ca(2+)]( i) in diabetic acinar cells. However, combining the islet hormones with either ACh or CCK-8 failed to enhance [Ca(2+)](i) compared to the reponses obtained in acinar cells from age-matched control. The results suggests that [Ca(2+)](i) homeostasis is deranged during diabetes mellitus and this in turn is probably associated with reduced pancreatic amylase secretion.  相似文献   

5.
In isolated dispersed pancreatic acini, we have characterized the interactions between cholecystokinin (CCK) and CCK receptors by simultaneously measuring CCK-33 immunoreactivity and CCK bioactivity. Incubation of acinar cells with CCK-33 at cell density of 0.2-0.3 mg acinar protein per ml resulted in stimulation of amylase release concomitant with significant and time-dependent decrease of the immunoreactive CCK. With L-364,718 (0.1 microM), a specific CCK receptor antagonist, immunoreactive CCK levels in the media were not significantly altered during incubation; however, CCK-stimulated amylase release was almost completely abolished (94% inhibition). Vasoactive intestinal peptide (1 nM) significantly potentiated CCK stimulated amylase release without affecting immunoreactive CCK in the media. Insulin (167 nM) did not affect the CCK stimulated amylase release or immunoreactive CCK in the media. Incubation of acinar cells with CCK-33 at 4 degrees C did not affect the levels of immunoreactive CCK; however, a significant change in levels of immunoreactive CCK were found at 37 degrees C at 90 min. Incubation of cell free medium with CCK-33 in the presence or absence of secreted enzymes revealed no changes in CCK immunoreactivity in the medium at 90 min. Addition of bacitracin in the incubation media did not affect the CCK immunoreactivity or bioactivity. These findings indicate that in isolated rat pancreatic acini, CCK-33 stimulates amylase release through a receptor that is specifically blocked by L-364,718. Specificity of the interactions of CCK-33 with acinar cells in the media appears to be receptor-mediated and time- and temperature-dependent.  相似文献   

6.
In the present investigation the effect of neurotensin on pancreatic secretion of isolated pancreatic lobules from the rat was examined. We found a dose- and time-dependent stimulation of amylase release beginning with a concentration of 10(-9) M neurotensin. This response was potentiated by the cholinergic agonist carbachol, the gastrointestinal peptide secretin, and the CCK analogue caerulein. As we found neurotensin-immunoreactive nerves within the pancreas and as neurotensin-like immunoreactivity is present in the circulation (found previously), neurotensin may well be a further peptide taking part in the regulation of exocrine pancreatic secretion either as a hormone or a neurotransmitter. Neurotensin would then cooperate with cholinergic mechanisms, secretin, and CCK.  相似文献   

7.
The effect of synthetic rat amylin (10,100,1000 pmol/l) on glucose (10 mmol/) and arginine (10 mmol/l) -stimulated islet hormone release from the isolated perfused rat pancreas and on amylase release from isolated pancreatic acini was investigated. Amylin stimulated the insulin release during the first (+76%) and the second secretion period (+42%) at 1 nmol/l. The first phase of the glucagon release was inhibited concentration dependently by amylin and completely suppressed during the second phase. Amylin diminished the somatostatin release in a concentration dependent manner. This effect was more pronounced at the first than the second secretion period (1 nmol amylin: 1 phase: -60%, 2.phase: -22%). Amylin was without any effect on basal and CCK stimulated amylase release from isolated rat pancreatic acini. Our data suggest amylin, a secretory product of pancreatic B-cells, as a peptide with approximately strong paracrine effects within the Langerhans islet. Therefore, amylin might be involved in the regulation of glucose homeostasis.  相似文献   

8.
A study was made of the effect of adrenalectomy over different periods of time (6, 15 and 21 days) on exocrine pancreatic secretion in the rat in basal conditions and under stimulation with CCK. It was observed that adrenalectomy does not alter the rate of pancreatic flow but the response capacity to CCK is depressed. The secretion of total protein and amylase decreases significantly after sixth day, reaching the lowest levels after 21 days. Despite this, after 6 days the adrenalectomized rats showed the same capacity of response to CCK as the non-adrenalectomized animals, while after longer periods of time (15 and 21 days) the response to CCK was inhibited. The fact that the lack of glucocorticoids prevents the maturation of zymogen granules seems to be the main reason why the acinar cells do not increase protein secretion in response to CCK at 15 and 21 days after adrenalectomy. It is concluded that the sensitivity of exocrine pancreas to CCK and the amount of zymogen granules in the acinar cells decrease as a function of the time over which the animals are deprived of glucocorticoids.  相似文献   

9.
In the present study, the effect of TRH on amylase secretion was determined both in vivo, by cannulating the pancreatic duct of rats, as well as in vitro, by using isolated lobules and dissociated acini. The results show that TRH inhibited both basal and stimulated in vivo amylase secretion. Nevertheless, the in vitro experiments failed to show a TRH-related inhibitory effect when TRH was used alone, although the hormone did blunt the secretion elicited by CCK8 and bethanechol from isolated lobules and dissociated acini. Results suggest that TRH can inhibit stimulated amylase secretion in rats through a direct effect on acinar cells.  相似文献   

10.
This study examines the influence of ovariectomy and administration of a pharmacologic dose of estradiol on amylase release from isolated-dispersed rat pancreatic acini and cholecystokinin receptors on rat acinar cell membranes. Rats were sham ovariectomized (intact) or ovariectomized (Ovx) and 21 day timed release pellets containing either estradiol (2.5 mg) or vehicle, were implanted subcutaneously. Eighteen days later, pancreatic acini were isolated from rats by collagenase digestion and differential centrifugation. Total cellular amylase, basal and cholecystokinin octapeptide (CCK8) stimulated amylase release and CCK membrane receptors were measured. Acini isolated from estradiol treated Ovx rats had significantly greater total cellular amylase, compared to acini isolated from either intact or Ovx rats. The amplitude of both total stimulated amylase release and percent total stimulated amylase release were significantly greater for acini isolated from vehicle treated Ovx rats, than acini isolated from either intact or estradiol treated Ovx rats. The magnitude of percent total amylase release of acini isolated from estradiol treated Ovx rats was significantly lower than that of acini isolated from intact rats. Cholecystokinin receptor concentration was significantly greater on membranes prepared from vehicle treated Ovx rats, compared to membranes prepared from either intact or estradiol treated Ovx rats. These data indicate that ovariectomy is associated with increased responsiveness of pancreatic acini to CCK stimulation, while chronic estradiol treatment of ovariectomized rats is associated with increased total cellular amylase and decreased acinar cell responsiveness to CCK8. Estrogen mediated alterations in acinar cell amylase content and amylase release may play a role in estrogen related pancreatitis.  相似文献   

11.
Porcine islet isolation, cellular composition and secretory response   总被引:1,自引:0,他引:1  
Porcine islets were isolated by infusion of a warm collagenase solution into whole pancreata followed by static incubation at 37 degrees C for 15 minutes. The pancreata were then chopped into small pieces and the free islets purified by filtration and centrifugation over a ficoll gradient. The insulin:amylase ratio of the islets compared to that in the intact pancreas was determined in 19 pancreata and indicates that the isolated islets were of a high degree of purity. The distribution of insulin, glucagon, somatostatin and pancreatic polypeptide containing cells in pig pancreas sections was compared with that in rat. Porcine islets were much smaller and less well defined than rat islets with infiltration of acinar material even into the islet core. The levels of insulin, glucagon and somatostatin in porcine pancreas and isolated porcine islets were measured using conventional radioimmunoassay techniques. The ratio of these hormones in the pancreas was 105.1:5.8:1 respectively, and in the islets 105.1:0.68:0.087 respectively. Fragmentation of the islets during the isolation may have led to the loss of glucagon and somatostatin-containing cells. Islets cultured overnight and tested with a range of glucose concentrations for one hour did not show a significant stimulation of insulin secretion in the presence of 8.3 mM or 16.7 mM glucose compared to that in 2.8 mM glucose. However freshly isolated islets challenged with 8.3 mM, 13.9 mM and 22.2 mM glucose showed a 1.8 fold, 2.0 fold and 2.3 fold response respectively, over that in 2.8 mM glucose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The distribution of adrenergic, cholinergic and amino acid neurotransmitters and/or their enzymes were examined in both the normal and diabetic pancreatic tissues in rat using immunohistochemistry to determine whether changes in the pattern of distribution of nerves containing these neurotransmitters will occur as a result of diabetes mellitus. In addition to this, the effect of noradrenaline (NA), adrenaline (ADR), acetylcholine (ACh) and gamma-amino butyric acid (GABA) on glucagon secretion from the isolated normal and diabetic pancreatic tissues was also investigated. Pancreatic fragments from the tail end of normal and diabetic rats were removed and incubated with different concentrations (10(-8)-10(-4) M) of these neurotransmitters. Glucagon secretion into the supernatant was later determined by radioimmunoassay. NA at 10(-6) M evoked a three-fold increase in glucagon secretion from normal pancreatic tissue fragments. In diabetic pancreatic tissue, NA at 10(-6) M was able to increase glucagon secretion 1.5 times the value obtained from diabetic basal. ADR (10(-8) M) increased glucagon secretion slightly but not significantly in normal pancreatic tissue. ADR inhibited glucagon secretion from diabetic pancreas at all concentrations. ACh (10(-8) M) induced a five-fold increase in glucagon secretion from normal pancreatic tissue. In a similar way, ACh evoked a two-fold increase in glucagon secretion from diabetic pancreas at 10(-4) M. In normal pancreatic tissue, GABA produced a slight but not significant increase in glucagon secretion at 10(-4) M. In contrast to this it inhibited glucagon secretion from diabetic pancreatic tissue fragments at all concentrations. In summary, tyrosine hydroxylase- and choline acetyltransferase-positive nerves are equally well distributed in both normal and diabetic rat pancreas. There was an increase in the number of glucagon positive cells and a decrease in the number of GABA-positive cells in diabetic pancreas. NA and ACh have a potent stimulatory effect on glucagon secretion from normal pancreatic tissue fragments, whereas ADR and GABA produced a small but not significant increase in glucagon secretion from normal pancreas. NA and GABA stimulated glucagon secretion from diabetic pancreas. In contrast, ADR and ACh inhibited glucagon secretion from diabetic pancreas. Neurotransmitters vary in their ability to provoke glucagon secretion from either normal or diabetic pancreas.  相似文献   

13.
14.
Xenin is a 25-amino acid peptide of the neurotensin/xenopsin family identified in gastric mucosa as well as in a number of tissues, including the pancreas of various mammals. In healthy subjects, plasma xenin immunoreactivity increases after meals. Infusion of the synthetic peptide in dogs evokes a rise in plasma insulin and glucagon levels and stimulates exocrine pancreatic secretion. The latter effect has also been demonstrated for xenin-8, the C-terminal octapeptide of xenin. We have investigated the effect of xenin-8 on insulin, glucagon and somatostatin secretion in the perfused rat pancreas. Xenin-8 stimulated basal insulin secretion and potentiated the insulin response to glucose in a dose-dependent manner (EC(50)=0.16 nM; R(2)=0.9955). Arginine-induced insulin release was also augmented by xenin-8 (by 40%; p<0.05). Xenin-8 potentiated the glucagon responses to both arginine (by 60%; p<0.05) and carbachol (by 50%; p<0.05) and counteracted the inhibition of glucagon release induced by increasing the glucose concentration. No effect of xenin-8 on somatostatin output was observed. Our observations indicate that the reported increases in plasma insulin and glucagon levels induced by xenin represent a direct influence of this peptide on the pancreatic B and A cells.  相似文献   

15.
The effect of infused acetylcholine and (2-acetyllactoyloxyethyl)-trimethylammonium hemi-1,5-naphthalenedisulfonate (aclatonium napadisilate), a new cholinergic drug . On endocrine and exocrine secretory responses was simultaneously investigated during the perfusion of isolated rat pancreases. Acetylcholine (1.1 microM) stimulated the output of pancreatic juice and amylase, and significantly elicited the production of both insulin and glucagon. Its effect on somatostatin secretion, however, was minimal. Both pancreatic juice flow and amylase output were also significantly stimulated by aclatonium napadisilate (12 microM). These stimulatory effects of aclatonium napadisilate on the exocrine pancreas were blocked by atropine (25 microM). Aclatonium napadisilate could stimulate glucagon, but could not influence insulin and somatostatin secretion. The addition of atropine had no effect on the release of insulin, glucagon, and somatostatin. These results indicate that the effects of aclatonium napadisilate is cholinergic, and that the action is muscarinic. In addition, it can be concluded that pancreatic somatostatin secretion, as well as other hormones from islet cells, is controlled by the parasympathetic nervous system.  相似文献   

16.
Pancreatic lobules were isolated from 2 groups of male Wistar rats after 23 days of diet. A control group (C) fed on a 20% protein diet (16% gluten + 4% casein) and an experimental group (E) on a 5% protein diet (4% gluten + 1% casein). After isolation, lobules were preincubated 10 min with 10 muCi [3H]-leucine, washed, then incubate within Krebs Ringer bicarbonate Hepes. Basal secretion, then stimulated secretion (50 pM of cholecystokinin (CCK] of radioactive and non-radioactive protein and amylase outputs were measured. During basal secretion, in (E) group, lobules secreted more proteins than (C) one, the same outputs of amylase and radioactive protein were observed in both groups. The stimulated secretion by CCK increased the outputs of non-radioactive protein and amylase of lobules (T) (2-3 fold), but was without effect on lobule (E) outputs. Therefore, a low-protein diet involved a decrease of CCK sensibility on acinar cells, this fact might be mediated by a decreasing number and/or affinity of their CCK receptors.  相似文献   

17.
Cholecystokinin (CCK) has been shown to increase cytosolic calcium and stimulate enzyme release from pancreatic acinar cells and a rat acinar cell line, AR42J. CCK is also trophic to normal pancreas and pancreatic cancer; however, the cellular mechanisms which regulate CCK-stimulated growth are unknown. The effect of CCK on intracellular calcium was evaluated in four human pancreatic cancer cell lines known to grow in response to CCK but not secrete enzymes (SW-1990, MIA PaCa-2, BXPC-3 and PANC-1) and a rat acinar cell line (AR42J) shown to secrete enzymes but not grow with CCK. By using single cell fluorescence microscopy in fura-2 loaded cells, intracellular calcium [Ca2+]i was measured. After obtaining baseline fluorescent cell images, synthetic CCK-octapeptide (CCK8) was added to the cells and images of cell fluorescence captured. [Ca2+]i of the rat acinar cells increased (603%) over the baseline within the first minute after the addition of CCK (4.10(-13) M to 4.10(-10) M) in 77% of cells tested. In contrast [Ca2+]i failed to significantly change in the human cancer cells treated with CCK. To further localize the defect in hormone signal transduction in cancer cells, cells were suspended in low calcium media and the plasma membranes were selectively permeabilized with digitonin. Media free calcium concentration was continuously monitored by fura-2 fluorescence. Addition of inositol 1,4,5-trisphosphate (IP3) resulted in a marked increase in medium calcium concentration indicating IP3 was capable of releasing calcium from intracellular stores in both the AR42J rat acinar cell line and in the human pancreas cancer cell lines. In conclusion, CCK does not increase cytosolic calcium in human pancreatic cancer cells in contrast to rat acinar cells although all contain IP3-sensitive intracellular Ca2+ pools. Our results suggest that growth promoting and secretory effects of CCK on pancreatic cells may occur via two independent signalling pathways.  相似文献   

18.
The binding of cholecystokinin (CCK) to its receptors on isolated rat pancreatic acini was investigated employing high specific activity, radioiodinated CCK (125I-BH-CCK), prepared by the conjugation of 125I-Bolton-Hunter reagent (125I-BH) to CCK. Binding was specific, time-dependent, reversible, and linearly related to the acinar protein concentration. After incubation for 30 min at 37 degrees C, the 125I-BH-CCK both in the incubation medium and bound to acini remained intact, as judged by gel filtration and trichloroacetic acid precipitation studies. Scatchard analysis was compatible with two classes of binding sites on acini: a very high affinity site (Kd, 64 pM) and a lower affinity site (Kd, 21 nM). 125I-BH-CCK binding to acini was competitively inhibited by CCK and four of its analogues in proportion to their biological potencies but not by unrelated hormones. Stimulation of amylase secretion by CCK and inhibition of 125I-BH-CCK binding by the same analogues carried out under identical conditions revealed a correlation (r = 0.99) between binding potency and amylase secretion. Stimulation of amylase secretion by CCK closely paralleled the occupancy of the high affinity CCK binding sites. It is concluded that the high affinity CCK binding sites most likely are the receptors mediating the stimulation of amylase secretion by CCK.  相似文献   

19.
Amylin, a peptide hormone from pancreatic beta-cells, is reported to inhibit insulin secretion in vitro and in vivo and to inhibit nutrient-stimulated glucagon secretion in vivo. However, it has been reported not to affect arginine-stimulated glucagon secretion in vitro. To resolve if the latter resulted from inactive peptide (a problem in the early literature), those experiments were repeated here with well-characterized peptide and found to be valid. In isolated perfused rat pancreas preparations, coperfusion with 1 nM amylin had no effect on arginine-, carbachol-, or vasoactive intestinal peptide-stimulated glucagon secretion. Amylin also had no effect on glucagon output stimulated by decreasing glucose concentration from 11 to 3.2 mM or on glucagon suppression caused by increasing glucose from 3.2 to 7 mM. Amylin at 100 nM had no effect in isolated islets in which glucagon secretion was stimulated by exposure to 10 mM arginine, even though glucagon secretion in the same preparation was inhibited by somatostatin. In anesthetized rats, amylin coinfusion had no effect on glucagon secretion stimulated by insulin-induced hypoglycemia. To reconcile reports of glucagon inhibition with the absence of effect in the experiments just described, anesthetized rats coinfused with rat amylin or with saline were exposed sequentially to intravenous L-arginine (during a euglycemic clamp) and then to hypoglycemia. Amylin inhibited arginine-induced, but not hypoglycemia-induced, glucagon secretion in the same animal. In conclusion, we newly identify a selective glucagonostatic effect of amylin that appears to be extrinsic to the isolated pancreas and may be centrally mediated.  相似文献   

20.
柴胡皂甙(I)对胰腺腺泡的拟膜受体激动剂作用   总被引:4,自引:0,他引:4  
应用检测淀粉酶分泌和单细胞[Ca^2 ]的技术,研究了Bt2-cGMP和GDP对柴胡皂甙(Ⅰ)[SA(I)]和CCK-8促大鼠胰腺腺泡分泌和增加[Ca^2 ]i的抑制作用。Bt2-cGMP对SA(I)和CCK-8促酶分泌的抑制有相似的剂量依赖性。Bt2-cGMP对SA(I)刺激的酶分泌动力学的抑制较对CCK-8滞后并持续。SA(I)诱发的胰腺腺泡单细胞[Ca^2 ]i的变化与CCK-8的作用有所不同;[Ca^2 ]i峰值上升较慢且持续较长,并在峰后[Ca^2 ]i再次升高。GDP亦抑制SA(I)刺激的酶分泌和[Ca^2 ]i增加的峰值。结果表明,SA(I)可激活胰腺腺泡细胞膜受体从而升高[Ca^2 ]i和促酶分泌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号