首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
噬菌体是地球上数量最丰富的有机体,其在自然生态系统的塑造和细菌进化驱动中发挥着至关重要的作用。在与宿主的相互斗争中,噬菌体可以选择以下2种方式决定其与宿主的命运:(1)裂解:通过裂解宿主细胞最终大量释放噬菌体颗粒;(2)溶原:将其染色体整合到宿主细胞基因组中,与宿主建立一种潜在的互存关系。对于一些温和的噬菌体,这种倾向进一步受到感染多样性的调节,其中单一感染主要是裂解性的,而多重感染则多是溶原性的。溶原性的噬菌体不仅可以根据外界环境的理化因子,还可以通过细菌自身的群体感应系统来启动裂解-溶原开关,进而决定其宿主菌的命运。与此同时,宿主细菌在与噬菌体长时间的斗争中也进化出了针对噬菌体的手段。总而言之,噬菌体深刻影响着细菌的群落动态、基因组进化和生态系统等,而这一切都取决于噬菌体与宿主间的斗争模式(裂解/溶原性感染)。本文探讨了导致温和噬菌体对宿主菌进行裂解-溶原命运抉择的影响因素并系统性总结了细菌在面对噬菌体侵染时的应对策略的最新研究进展,以期能为噬菌体与宿主的研究提供建议和帮助。  相似文献   

2.
前噬菌体     
黎庶  胡福泉 《微生物学通报》2009,36(3):0432-0438
随着微生物基因组测序工作的广泛展开,前噬菌体在宿主菌基因组中普遍存在的事实已逐渐为人们所接受.相关研究工作的深入揭示前噬菌体并不只是细菌体内一个简单的寄生体,相反是细菌生理活动相当活跃的参与者,在宿主菌生命活动中发挥着重要的作用.对前噬菌体的深入了解将丰富人们对多种生命现象的认识.本文即是关于前噬菌体的分类、分布、鉴定、进化及其与宿主菌相互作用等知识点的一个简单综述.  相似文献   

3.
噬菌体是细菌的天敌,它利用宿主的细胞机制完成自身的复制。在感染过程中噬菌体基因组进入细菌细胞后立即产生调节或重新定向宿主特定功能的蛋白质(即抑菌蛋白),以逃避多种细菌的防御机制或改变宿主的分子代谢机制。研究发现,这些噬菌体编码的抑菌蛋白可抑制细菌分裂,干扰细菌遗传物质的复制、转录及降解,影响CRISPR介导的细菌免疫以及代谢。明确噬菌体编码的抑菌蛋白如何影响这些宿主的防御或分子代谢机制可以优化目前基于噬菌体的抗菌策略,找出控制细菌感染的新途径,为抑菌药物的发现和设计打开新的大门。本文就近年来发现的噬菌体编码的抑菌蛋白及其抑菌机制的研究进展进行综述。  相似文献   

4.
针对噬菌体的细菌宿主范围预测对于深入理解噬菌体及将其作为抗生素替代用于生物疗法具有重要意义。传统生物实验方法确定噬菌体的细菌宿主范围受到极有限的噬菌体可培养性和严苛的培养条件限制,而高通量测序技术所提供的海量基因组或宏基因组序列提供了噬菌体及细菌重要的序列信息,因此智能计算为预测噬菌体的细菌宿主范围提供了可行方法。本文从智能计算的角度对噬菌体的细菌宿主范围预测研究进行系统梳理,从噬菌体感染细菌的过程入手,描述配对预测模型所依赖的特征及其生物合理性,归纳宿主范围预测的智能模型、建模原理及预测策略,总结建模训练和评估所依赖的参考数据集与真实数据及评价指标。本文特别注意挖掘和分析各信息手段、模型、方法其背后的生物合理性及其依赖的生物机理。本综述期望推动基于智能算法的噬菌体的细菌宿主范围预测研究发展,并探索将生物先验结合人工智能实现噬菌体侵袭细菌宿主的本质机理推断,同时也为基于噬菌体的临床应用提供参考与借鉴。  相似文献   

5.
李娜  袁晓鸣  王涓  吴清平  丁郁 《微生物学报》2022,62(11):4324-4335
噬菌体可以作为抗生素的替代物,用于致病菌的防控和治疗。有尾噬菌体是最常见的噬菌体类型,可以根据尾部形态的不同分为短尾噬菌体、肌尾噬菌体和长尾噬菌体3类。不同噬菌体间不仅具有明显的形态差异,其对宿主细菌的识别机制也不相同。短尾噬菌体由于其较小的基因组长度和相对简单的结构组成,成为研究宿主与噬菌体的共进化关系、以及通过基因工程改造噬菌体的良好模型。本文综述了短尾噬菌体的分类特征及不同短尾噬菌体识别宿主受体的分子机制。通过明确短尾噬菌体的识别宿主机制,有助于对相应噬菌体进行工程化改造,解决噬菌体应用中存在的关键问题,使噬菌体更广泛地应用于生物、医学与食品工业等领域中。  相似文献   

6.
《遗传》2020,(8)
假单胞菌属(Pseudomonasspp.)是地球上重要的生态菌群之一,广泛分布于淡水、土壤等生态环境。假单胞菌噬菌体是以假单胞菌为宿主的病毒,不仅影响宿主的生存状况和进化过程,而且在生物物质循环和能量流动中扮演着重要角色。随着基因组测序技术的飞速发展,许多假单胞菌噬菌体的全基因组测序工作已经完成。截至2020年7月,GenBank收录的假单胞菌噬菌体基因组数有247条,占全部病毒基因组(10,069条)的2.45%。由于假单胞菌噬菌体基因组大小差异较大、遗传含量不同、基因组之间相似性较低,因此对假单胞菌噬菌体基因组的研究相对较少。本文主要对假单胞菌噬菌体基因组的特点、遗传多样性和功能基因方面的研究进行了综述,以期为理解细菌和噬菌体的对抗性共进化作用以及噬菌体的遗传进化提供参考。  相似文献   

7.
噬菌体与细菌是自然界中存在最广泛的两类微生物,两者在群体水平、个体水平以及分子水平上均存在复杂的相互作用关系。细菌能够影响溶原性噬菌体的溶原-裂解决策,而被噬菌体感染的细菌基因表达谱也会受到噬菌体影响,使宿主菌的代谢、应激、抵抗力、毒性等多种性状发生改变。现从细菌和噬菌体两者的角度,分别综述细菌抵抗噬菌体感染以及噬菌体对具有抗性的细菌进行再感染的机制。  相似文献   

8.
噬菌体是感染细菌的病毒,广泛存在于各类环境中。由于传统实验研究的局限性及噬菌体基因的特异性,导致对肠道噬菌体的研究很少。随着宏基因组测序技术的发展和各种生物信息分析软件的开发,可以通过噬菌体组学,加深对肠道噬菌体的认识。噬菌体组分析流程主要包括原始数据质量控制和预处理,病毒基因组序列的拼接组装,类病毒颗粒的筛选和系统分类注释以及进化分析和预测相应宿主细菌。本文对噬菌体组分析流程和其中所需要的常用生物信息分析工具和数据库进行详细的介绍,可以为肠道噬菌体研究以及相关的研究人员提供参考。  相似文献   

9.
迄今,在NCBI基因组数据库中大肠杆菌及其噬菌体的全基因组序列数量众多,这些大数据足以让我们基于全基因组序列比对研究大肠杆菌噬菌体侵染能力及宿主的抗感染能力。目前还未见大肠杆菌噬菌体侵染能力的相关报道。本研究为研究噬菌体侵染能力及其专一性提供数据。从NCBI数据库中下载大肠杆菌进化树上的代表菌株及全部的大肠杆菌噬菌体基因组序列,采用Blast软件进行序列比对,找出噬菌体与宿主的一一对应关系,再通过R语言等相关软件分析噬菌体对不同大肠杆菌宿主的侵染能力。在35个大肠杆菌噬菌体中,Escherichia phage HK75等四株噬菌体的侵染能力最强,Escherichia phage PhaxⅠ和Escherichia phage v B_Eco M_CBA120的侵染能力比较弱。在44个大肠杆菌代表株中,Escherichia coli strain400791、Escherichia coli M605的易感能力较强,Escherichia coli MS 84-1的抗噬菌体能力较强。本研究首次利用全基因组序列比对的方法分析了噬菌体对宿主的侵染能力,为噬菌体侵染能力研究提供参考数据。  相似文献   

10.
细菌与噬菌体相互抵抗机制研究进展   总被引:1,自引:1,他引:0  
噬菌体作为一种侵染细菌的病毒,能够特异性识别宿主细菌。近年来,抗生素的过度使用导致耐药细菌的出现,噬菌体有望成为对抗耐药细菌的新武器。在细菌与噬菌体长期共进化过程中,二者都演化出一系列抵御策略。本文从抑制噬菌体吸附、阻止噬菌体DNA进入、切割噬菌体基因组、流产感染以及群体感应对噬菌体的调控等方面,对细菌抵抗噬菌体的机制以及噬菌体应对细菌的策略进行了综述,同时还列举了细菌和噬菌体相互抵抗机制的检测方法,以期为噬菌体在细菌控制中的应用以及探究细菌抵抗噬菌体的机制提供理论依据。  相似文献   

11.
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.  相似文献   

12.
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.  相似文献   

13.
The impact of prophages on bacterial chromosomes   总被引:10,自引:0,他引:10  
  相似文献   

14.
Phage as agents of lateral gene transfer   总被引:10,自引:0,他引:10  
When establishing lysogeny, temperate phages integrate their genome as a prophage into the bacterial chromosome. Prophages thus constitute in many bacteria a substantial part of laterally acquired DNA. Some prophages contribute lysogenic conversion genes that are of selective advantage to the bacterial host. Occasionally, phages are also involved in the lateral transfer of other mobile DNA elements or bacterial DNA. Recent advances in the field of genomics have revealed a major impact by phages on bacterial chromosome evolution.  相似文献   

15.
Bacteriophages (or phages) play major roles in the evolution of bacterial pathogens via horizontal gene transfer. Multiple phages are often integrated in a host chromosome as prophages, not only carrying various novel virulence-related genetic determinants into host bacteria but also providing various possibilities for prophage-prophage interactions in bacterial cells. In particular, Escherichia coli strains such as Shiga toxin (Stx)-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) strains have acquired more than 10 prophages (up to 21 prophages), many of which encode type III secretion system (T3SS) effector gene clusters. In these strains, some prophages are present at a single locus in tandem, which is usually interpreted as the integration of phages that use the same attachment (att) sequence. Here, we present phages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Some of the phages integrated into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages in a single cell. The identified attB sequences in prophage genomes are apparently derived from host chromosomes. In addition, two or three different attB sequences are present in some prophages, which results in the generation of prophage clusters in various complex configurations. These phages integrating into prophages represent a medically and biologically important type of inter-phage interaction that promotes the accumulation of T3SS effector genes in STEC and EPEC, the duplication of Stx phages in STEC, and the conversion of EPEC to STEC and that may be distributed in other types of E. coli strains as well as other prophage-rich bacterial species.  相似文献   

16.
Somatic coliphages have been proposed as indicators of water quality. But several factors have been considered a drawback for their use as indicators. We evaluated the contribution of temperate phages to the numbers of somatic coliphages detected in water by ISO (International Standards Organization) standardised methods. Prophage induction from naturally occurring bacteria was assayed with mitomycin C, ciprofloxacin and UV irradiation. Results indicate that the presence of prophages will not influence the determinations of somatic coliphages in water.  相似文献   

17.
Negativicutes are gram-negative bacteria characterized by two cell membranes, but they are phylogenetically a side-branch of gram-positive Firmicutes that contain only a single membrane. We asked whether viruses (phages) infecting Negativicutes were horizontally acquired from gram-negative Proteobacteria, given the shared outer cell structure of their bacterial hosts, or if Negativicute phages co-evolved vertically with their hosts and thus resemble gram-positive Firmicute prophages. We predicted and characterized 485 prophages (mostly Caudovirales) from gram-negative Firmicute genomes plus 2977 prophages from other bacterial clades, and we used virome sequence data from 183 human stool samples to support our predictions. The majority of identified Negativicute prophages were lambdoids closer related to prophages from other Firmicutes than Proteobacteria by sequence relationship and genome organization (position of the lysis module). Only a single Mu-like candidate prophage and no clear P2-like prophages were identified in Negativicutes, both common in Proteobacteria. Given this collective evidence, it is unlikely that Negativicute phages were acquired from Proteobacteria. Sequence-related prophages, which occasionally harboured antibiotic resistance genes, were identified in two distinct Negativicute orders (Veillonellales and Acidaminococcales), possibly suggesting horizontal cross-order phage infection between human gut commensals. Our results reveal ancient genomic signatures of phage and bacteria co-evolution despite horizontal phage mobilization.  相似文献   

18.
19.
The influence of infection of natural isolates of Salmonella enterica with lytic (nonlysogenic) phages on the expression of resident cryptic or defective prophages in host bacteria was studied. The induction of defective/cryptic phages after infection with nonlysogenic phages and packaging of bacterial chromosomal fragments in capsids of defective phages is demonstrated. This may lead to migration and wide distribution of both the genomes of defective phages per se and various fragments of the bacterial chromosome (including pathogenic islands) in new bacterial strains with concomitant change of their properties, the acquired new features of pathogenicity among them.  相似文献   

20.
【目的】枯草芽孢杆菌(Bacillus subtilis)是在自然界中广泛存在的革兰氏阳性菌,其抗逆性极强,能抑制大多数有害菌的繁殖,是常用的产酶菌,用其生产的蛋白酶、淀粉酶占全球工业酶产量的50%。原噬菌体(prophage)整合在宿主基因组中,可为宿主提供基因和生物学功能,非常具有研究价值。以往,有关B. subtilis原噬菌体的报道主要集中于缺陷型原噬菌体(defective prophage),本研究对一株非缺陷型活性原噬菌体(active prophage)的基因组进行解析,以扩充对非缺陷型原噬菌体的认知。【方法】使用丝裂霉素C从枯草芽孢杆菌中诱导一株噬菌体,命名为Bacillus phage Bsu-yong1(简称Bsu-yong1)。对Bsu-yong1进行负染、透射电镜(transmission electron microscopy,TEM)观察,用Illumina MiSeq测定其基因组序列、综合运用生物信息学工具对其进行基因功能注释和系统进化分析。【结果】Bsu-yong1与PBSX类缺陷型原噬菌体在形态上相似,但Bsu-yong1具有完整的噬菌体基因组,这与缺陷型原噬菌体不同,后者在包装过程中不能正确包裹自身的基因组,而是随机包裹一段宿主染色体。Bsu-yong1基因组全长为43 590 bp,G+C含量为41%,含有62个开放阅读框(open reading frame,ORF),呈模块化分布。Bsu-yong1拥有基因编码T7SS效应器LXG多态性毒素(T7SS effector LXG polymorphic toxin)、ImmA/IrrE蛋白和SMI1/KNR4蛋白。前二者为细菌毒素(toxin),后者为抗毒素(antitoxin),toxin-antitoxin是细菌免疫系统重要成员,参与菌间竞争与环境适应。此前,尚未有编码LXG polymorphic toxin的基因在噬菌体中被发现和报道。在基于全基因组比对构建的蛋白谱进化树(proteomic tree)中,Bsu-yong1与噬菌体sv105、rho14、vB_BteM-A9Y聚集形成一个独立的进化支(clade),基因组比对显示它们基因组的复制与调控模块具有高度保守性,它们共享29个核心基因(core gene),均具有PBSX样形态特征。Bsu-yong1与其他噬菌体的进化距离较远。将Bsu-yong1与所有噬菌体进行比对,得到的成对序列比较(pairwise sequence comparison,PASC)最大值为46.72%,小于属边界值(70%)。【结论】vB_Bsu-yong1在有尾纲中代表一个新的未知的属;建议构建一个新的科(family),该科由Bsu-yong1与噬菌体sv105、rho14、vB_BteM-A9Y组成。vB_Bsu-yong携带免疫相关基因,它可能有利于宿主在菌间竞争中获胜和适应环境。本研究丰富了噬菌体基因数据库,拓展了对芽孢杆菌活性原噬菌体的认知。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号