首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

There is inconsistent association between urate transporters SLC22A11 (organic anion transporter 4 (OAT4)) and SLC22A12 (urate transporter 1 (URAT1)) and risk of gout. New Zealand (NZ) Māori and Pacific Island people have higher serum urate and more severe gout than European people. The aim of this study was to test genetic variation across the SLC22A11/SLC22A12 locus for association with risk of gout in NZ sample sets.

Methods

A total of 12 single nucleotide polymorphism (SNP) variants in four haplotype blocks were genotyped using TaqMan® and Sequenom MassArray in 1003 gout cases and 1156 controls. All cases had gout according to the 1977 American Rheumatism Association criteria. Association analysis of single markers and haplotypes was performed using PLINK and Stata.

Results

A haplotype block 1 SNP (rs17299124) (upstream of SLC22A11) was associated with gout in less admixed Polynesian sample sets, but not European Caucasian (odds ratio; OR = 3.38, P = 6.1 × 10-4; OR = 0.91, P = 0.40, respectively) sample sets. A protective block 1 haplotype caused the rs17299124 association (OR = 0.28, P = 6.0 × 10-4). Within haplotype block 2 (SLC22A11) we could not replicate previous reports of association of rs2078267 with gout in European Caucasian (OR = 0.98, P = 0.82) sample sets, however this SNP was associated with gout in Polynesian (OR = 1.51, P = 0.022) sample sets. Within haplotype block 3 (including SLC22A12) analysis of haplotypes revealed a haplotype with trans-ancestral protective effects (OR = 0.80, P = 0.004), and a second haplotype conferring protection in less admixed Polynesian sample sets (OR = 0.63, P = 0.028) but risk in European Caucasian samples (OR = 1.33, P = 0.039).

Conclusions

Our analysis provides evidence for multiple ancestral-specific effects across the SLC22A11/SLC22A12 locus that presumably influence the activity of OAT4 and URAT1 and risk of gout. Further fine mapping of the association signal is needed using trans-ancestral re-sequence data.  相似文献   

2.

Background

Recently, a large meta-analysis including over 28,000 participants identified nine different loci with association to serum uric acid (UA) levels. Since elevated serum UA levels potentially cause gout and are a possible risk factor for coronary artery disease (CAD) and myocardial infarction (MI), we performed two large case-control association analyses with participants from the German MI Family Study. In the first study, we assessed the association of the qualitative trait gout and ten single nucleotide polymorphisms (SNP) markers that showed association to UA serum levels. In the second study, the same genetic polymorphisms were analyzed for association with CAD.

Methods and Findings

A total of 683 patients suffering from gout and 1,563 healthy controls from the German MI Family Study were genotyped. Nine SNPs were identified from a recently performed genome-wide meta-analysis on serum UA levels (rs12129861, rs780094, rs734553, rs2231142, rs742132, rs1183201, rs12356193, rs17300741 and rs505802). Additionally, the marker rs6855911 was included which has been associated with gout in our cohort in a previous study. SNPs rs734553 and rs6855911, located in SLC2A9, and SNP rs2231142, known to be a missense polymorphism in ABCG2, were associated with gout (p = 5.6*10−7, p = 1.1*10−7, and p = 1.3*10−3, respectively). Other SNPs in the genes PDZK1, GCKR, LRRC16A, SLC17A1-SLC17A3, SLC16A9, SLC22A11 and SLC22A12 failed the significance level. None of the ten markers were associated with risk to CAD in our study sample of 1,473 CAD cases and 1,241 CAD-free controls.

Conclusion

SNP markers in SLC2A9 and ABCG2 genes were found to be strongly associated with the phenotype gout. However, not all SNP markers influencing serum UA levels were also directly associated with the clinical manifestation of gout in our study sample. In addition, none of these SNPs showed association with the risk to CAD in the German MI Family Study.  相似文献   

3.

Background

Uric acid is the primary byproduct of purine metabolism. Hyperuricemia is associated with body mass index (BMI), sex, and multiple complex diseases including gout, hypertension (HTN), renal disease, and type 2 diabetes (T2D). Multiple genome-wide association studies (GWAS) in individuals of European ancestry (EA) have reported associations between serum uric acid levels (SUAL) and specific genomic loci. The purposes of this study were: 1) to replicate major signals reported in EA populations; and 2) to use the weak LD pattern in African ancestry population to better localize (fine-map) reported loci and 3) to explore the identification of novel findings cognizant of the moderate sample size.

Methods

African American (AA) participants (n = 1,017) from the Howard University Family Study were included in this study. Genotyping was performed using the Affymetrix® Genome-wide Human SNP Array 6.0. Imputation was performed using MACH and the HapMap reference panels for CEU and YRI. A total of 2,400,542 single nucleotide polymorphisms (SNPs) were assessed for association with serum uric acid under the additive genetic model with adjustment for age, sex, BMI, glomerular filtration rate, HTN, T2D, and the top two principal components identified in the assessment of admixture and population stratification.

Results

Four variants in the gene SLC2A9 achieved genome-wide significance for association with SUAL (p-values ranging from 8.88 × 10-9 to 1.38 × 10-9). Fine-mapping of the SLC2A9 signals identified a 263 kb interval of linkage disequilibrium in the HapMap CEU sample. This interval was reduced to 37 kb in our AA and the HapMap YRI samples.

Conclusions

The most strongly associated locus for SUAL in EA populations was also the most strongly associated locus in this AA sample. This finding provides evidence for the role of SLC2A9 in uric acid metabolism across human populations. Additionally, our findings demonstrate the utility of following-up EA populations GWAS signals in African-ancestry populations with weaker linkage disequilibrium.  相似文献   

4.

Objective

Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2.

Methods

The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach.

Results

We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration.

Conclusion

Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.  相似文献   

5.
6.

Introduction

Acid phosphatase locus 1 (ACP1) encodes a low molecular weight phosphotyrosine phosphatase implicated in a number of different biological functions in the cell. The aim of this study was to determine the contribution of ACP1 polymorphisms to susceptibility to rheumatoid arthritis (RA), as well as the potential contribution of these polymorphisms to the increased risk of cardiovascular disease (CV) observed in RA patients.

Methods

A set of 1,603 Spanish RA patients and 1,877 healthy controls were included in the study. Information related to the presence/absence of CV events was obtained from 1,284 of these participants. All individuals were genotyped for four ACP1 single-nucleotide polymorphisms (SNPs), rs10167992, rs11553742, rs7576247, and rs3828329, using a predesigned TaqMan SNP genotyping assay. Classical ACP1 alleles (*A, *B and *C) were imputed with SNP data.

Results

No association between ACP1 gene polymorphisms and susceptibility to RA was observed. However, when RA patients were stratified according to the presence or absence of CV events, an association between rs11553742*T and CV events was found (P = 0.012, odds ratio (OR) = 2.62 (1.24 to 5.53)). Likewise, the ACP1*C allele showed evidence of association with CV events in patients with RA (P = 0.024, OR = 2.43).

Conclusions

Our data show that the ACP1*C allele influences the risk of CV events in patients with RA.  相似文献   

7.

Background

Serum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be associated with increased serum urate level and gout. The SLC2A9 gene encodes a facilitative glucose transporter, and it has two splice variants that are highly expressed in the proximal nephron, a key site for urate handling in the kidney. We investigated whether SLC2A9 is a functional urate transporter that contributes to the longstanding association between urate and blood pressure in man.

Methods and Findings

We expressed both SLC2A9 splice variants in Xenopus laevis oocytes and found both isoforms mediate rapid urate fluxes at concentration ranges similar to physiological serum levels (200–500 μM). Because SLC2A9 is a known facilitative glucose transporter, we also tested whether glucose or fructose influenced urate transport. We found that urate is transported by SLC2A9 at rates 45- to 60-fold faster than glucose, and demonstrated that SLC2A9-mediated urate transport is facilitated by glucose and, to a lesser extent, fructose. In addition, transport is inhibited by the uricosuric benzbromarone in a dose-dependent manner (K i = 27 μM). Furthermore, we found urate uptake was at least 2-fold greater in human embryonic kidney (HEK) cells overexpressing SLC2A9 splice variants than nontransfected kidney cells. To confirm that our findings were due to SLC2A9, and not another urate transporter, we showed that urate transport was diminished by SLC2A9-targeted siRNA in a second mammalian cell line. In a cohort of men we showed that genetic variants of SLC2A9 are associated with reduced urinary urate clearance, which fits with common variation at SLC2A9 leading to increased serum urate. We found no evidence of association with hypertension (odds ratio 0.98, 95% confidence interval [CI] 0.9 to 1.05, p > 0.33) by meta-analysis of an SLC2A9 variant in six case–control studies including 11,897 participants. In a separate meta-analysis of four population studies including 11,629 participants we found no association of SLC2A9 with systolic (effect size −0.12 mm Hg, 95% CI −0.68 to 0.43, p = 0.664) or diastolic blood pressure (effect size −0.03 mm Hg, 95% CI −0.39 to 0.31, p = 0.82).

Conclusions

This study provides evidence that SLC2A9 splice variants act as high-capacity urate transporters and is one of the first functional characterisations of findings from genome-wide association scans. We did not find an association of the SLC2A9 gene with blood pressure in this study. Our findings suggest potential pathogenic mechanisms that could offer a new drug target for gout.  相似文献   

8.
The PDZ and LIM domain 5 (PDLIM5) gene may play a role in cancer, bipolar disorder, major depression, alcohol dependence and schizophrenia; however, little is known about the interaction effect of steroid and PDLIM5 gene on cancer. This study examined 47 single-nucleotide polymorphisms (SNPs) within the PDLIM5 gene in the Marshfield sample with 716 cancer patients (any diagnosed cancer, excluding minor skin cancer) and 2848 noncancer controls. Multiple logistic regression model in PLINK software was used to examine the association of each SNP with cancer. Bayesian logistic regression in PROC GENMOD in SAS statistical software, ver. 9.4 was used to detect gene–steroid interactions influencing cancer. Single marker analysis using PLINK identified 12 SNPs associated with cancer (P < 0.05); especially, SNP rs6532496 revealed the strongest association with cancer (P = 6.84 × 10?3); while the next best signal was rs951613 (P = 7.46 × 10?3). Classic logistic regression in PROC GENMOD showed that both rs6532496 and rs951613 revealed strong gene–steroid interaction effects (OR = 2.18, 95% CI = 1.31?3.63 with P = 2.9 × 10?3 for rs6532496 and OR = 2.07, 95% CI = 1.24 ?3.45 with P = 5.43 × 10?3 for rs951613, respectively). Results from Bayesian logistic regression showed stronger interaction effects (OR = 2.26, 95% CI = 1.2 ?3.38 for rs6532496 and OR = 2.14, 95% CI = 1.14 ?3.2 for rs951613, respectively). All the 12 SNPs associated with cancer revealed significant gene–steroid interaction effects (P < 0.05); whereas 13 SNPs showed gene–steroid interaction effects without main effect on cancer. SNP rs4634230 revealed the strongest gene–steroid interaction effect (OR = 2.49, 95% CI = 1.5 ?4.13 with P = 4.0 × 10?4 based on the classic logistic regression and OR = 2.59, 95% CI = 1.4 ?3.97 from Bayesian logistic regression; respectively). This study provides evidence of common genetic variants within the PDLIM5 gene and interactions between PLDIM5 gene polymorphisms and steroid use influencing cancer.  相似文献   

9.

Introduction

The Toll-like receptor 7 (TLR7) gene, encoded on human chromosome Xp22.3, is crucial for type I interferon production. A recent multicenter study in East Asian populations, comprising Chinese, Korean and Japanese participants, identified an association of a TLR7 single-nucleotide polymorphism (SNP) located in the 3' untranslated region (3' UTR), rs3853839, with systemic lupus erythematosus (SLE), especially in males, although some difference was observed among the tested populations. To test whether additional polymorphisms contribute to SLE in Japanese, we systematically analyzed the association of TLR7 with SLE in a Japanese female population.

Methods

A case-control association study was conducted on eight tag SNPs in the TLR7 region, including rs3853839, in 344 Japanese females with SLE and 274 healthy female controls.

Results

In addition to rs3853839, two SNPs in intron 2, rs179019 and rs179010, which were in moderate linkage disequilibrium with each other (r 2 = 0.53), showed an association with SLE (rs179019: P = 0.016, odds ratio (OR) 2.02, 95% confidence interval (95% CI) 1.15 to 3.54; rs179010: P = 0.018, OR 1.75, 95% CI 1.10 to 2.80 (both under the recessive model)). Conditional logistic regression analysis revealed that the association of the intronic SNPs and the 3' UTR SNP remained significant after we adjusted them for each other. When only the patients and controls carrying the risk genotypes at the 3' UTR SNPpositionwere analyzed, the risk of SLE was significantly increased when the individuals also carried the risk genotypes at both of the intronic SNPs (P = 0.0043, OR 2.45, 95% CI 1.31 to 4.60). Furthermore, the haplotype containing the intronic risk alleles in addition to the 3' UTR risk allele was associated with SLE under the recessive model (P = 0.016, OR 2.37, 95% CI 1.17 to 4.80), but other haplotypes were not associated with SLE.

Conclusions

The TLR7 intronic SNPs rs179019 and rs179010 are associated with SLE independently of the 3' UTR SNP rs3853839 in Japanese women. Our findings support a role of TLR7 in predisposition for SLE in Asian populations.  相似文献   

10.

Background

A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near MS4A4A, CD2AP, EPHA1 and CD33. Meta-analyses of this and a previously published GWAS revealed significant association at ABCA7 and MS4A, independent evidence for association of CD2AP, CD33 and EPHA1 and an opposing yet significant association of a variant near ARID5B. In this study, we genotyped five variants (in or near CD2AP, EPHA1, ARID5B, and CD33) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and APOE ε4 dosage.

Results

We found no significant evidence of series heterogeneity. Associations with LOAD were successfully replicated for EPHA1 (rs11767557; OR = 0.87, p = 5 × 10-4) and CD33 (rs3865444; OR = 0.92, p = 0.049), with odds ratios comparable to those previously reported. Although the two ARID5B variants (rs2588969 and rs494288) showed significant association with LOAD in meta-analysis of our dataset (p = 0.046 and 0.008, respectively), the associations did not survive adjustment for covariates (p = 0.30 and 0.11, respectively). We had insufficient evidence in our data to support the association of the CD2AP variant (rs9349407, p = 0.56).

Conclusions

Our data overwhelmingly support the association of EPHA1 and CD33 variants with LOAD risk: addition of our data to the results previously reported (total n > 42,000) increased the strength of evidence for these variants, providing impressive p-values of 2.1 × 10-15 (EPHA1) and 1.8 × 10-13 (CD33).  相似文献   

11.
12.

Introduction

The gene MICA encodes the protein major histocompatibility complex class I polypeptide-related sequence A. It is expressed in synovium of patients with rheumatoid arthritis (RA) and its implication in autoimmunity is discussed. We analyzed the association of genetic variants of MICA with susceptibility to RA.

Methods

Initially, 300 French Caucasian individuals belonging to 100 RA trio families were studied. An additional 100 independent RA trio families and a German Caucasian case-control cohort (90/182 individuals) were available for replication. As MICA is situated in proximity to known risk alleles of the HLA-DRB1 locus, our analysis accounted for linkage disequilibrium either by analyzing the subgroup consisting of parents not carrying HLA-DRB1 risk alleles with transmission disequilibrium test (TDT) or by implementing a regression model including all available data. Analysis included a microsatellite polymorphism (GCT)n and single-nucleotide polymorphisms (SNPs) rs3763288 and rs1051794.

Results

In contrast to the other investigated polymorphisms, the non-synonymously coding SNP MICA-250 (rs1051794, Lys196Glu) was strongly associated in the first family cohort (TDT: P = 0.014; regression model: odds ratio [OR] 0.46, 95% confidence interval [CI] 0.25 to 0.82, P = 0.007). Although the replication family sample showed only a trend, combined family data remained consistent with the hypothesis of MICA-250 association independent from shared epitope (SE) alleles (TDT: P = 0.027; regression model: OR 0.56, 95% CI 0.38 to 0.83, P = 0.003). We also replicated the protective association of MICA-250A within a German Caucasian cohort (OR 0.31, 95% CI 0.1 to 0.7, P = 0.005; regression model: OR 0.6, 95% CI 0.37 to 0.96, P = 0.032). We showed complete linkage disequilibrium of MICA-250 (D' = 1, r 2 = 1) with the functional MICA variant rs1051792 (D' = 1, r 2 = 1). As rs1051792 confers differential allelic affinity of MICA to the receptor NKG2D, this provides a possible functional explanation for the observed association.

Conclusions

We present evidence for linkage and association of MICA-250 (rs1051794) with RA independent of known HLA-DRB1 risk alleles, suggesting MICA as an RA susceptibility gene. However, more studies within other populations are necessary to prove the general relevance of this polymorphism for RA.  相似文献   

13.

Introduction

Behçet's disease is a chronic systemic inflammatory disease that remains incompletely understood. Herein, we perform the first genome-wide association study in Behçet's disease.

Methods

Using DNA pooling technology and the Affymetrix 500K arrays, we identified possible candidate gene associations with Behçet's disease in a cohort of 152 Behçet's disease patients and 172 healthy ethnically matched controls. Genetic loci that were identified in the pooling study were genotyped in patients and controls using TaqMan genotyping technology.

Results

We identified genetic associations between Behçet's disease and single-nucleotide polymorphisms (SNPs) in KIAA1529, CPVL, LOC100129342, UBASH3B, and UBAC2 (odds ratio = 2.04, 2.26, 1.84, 1.71, and 1.61, respectively; P value = 4.2 × 10-5, 1.0 × 10-4, 3.0 × 10-4, 1.5 × 10-3, and 5.8 × 10-3, respectively). Among the associated SNPs, the Behçet's disease-risk allele in rs2061634 leads to substitution of serine to cysteine at amino acid position 995 (S995C) in the KIAA1529 protein.

Conclusions

Using an unbiased whole-genome genetic association approach, we identified novel candidate genetic loci that are associated with increased susceptibility for Behçet's disease. These findings will help to better understand the pathogenesis of Behçet's disease and identify novel targets for therapeutic intervention.  相似文献   

14.

Introduction

We aimed to replicate association of newly identified systemic lupus erythematosus (SLE) loci.

Methods

We selected the most associated SNP in 10 SLE loci. These 10 SNPs were analysed in 1,579 patients with SLE and 1,726 controls of European origin by single-base extension. Comparison of allele frequencies between cases and controls was done with the Mantel–Haenszel approach to account for heterogeneity between sample collections.

Results

A previously controversial association with a SNP in the TYK2 gene was replicated (odds ratio (OR) = 0.79, P = 2.5 × 10-5), as well as association with the X chromosome MECP2 gene (OR = 1.26, P = 0.00085 in women), which had only been reported in a single study, and association with four other loci, 1q25.1 (OR = 0.81, P = 0.0001), PXK (OR = 1.19, P = 0.0038), BANK1 (OR = 0.83, P = 0.006) and KIAA1542 (OR = 0.84, P = 0.001), which have been identified in a genome-wide association study, but not found in any other study. All these replications showed the same disease-associated allele as originally reported. No association was found with the LY9 SNP, which had been reported in a single study.

Conclusions

Our results confirm nine SLE loci. For six of them, TYK2, MECP2, 1q25.1, PXK, BANK1 and KIAA1542, this replication is important. The other three loci, ITGAM, STAT4 and C8orf13-BLK, were already clearly confirmed. Our results also suggest that MECP2 association has no influence in the sex bias of SLE, contrary to what has been proposed. In addition, none of the other associations seems important in this respect.  相似文献   

15.
16.

Background

Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may underlie the pathophysiology of both diseases. GSTO polymorphisms were previously reported to associate with risk and age-at-onset of these diseases, although inconsistent follow-up study designs make interpretation of results difficult. We assessed two previously reported SNPs, GSTO1 rs4925 and GSTO2 rs156697, in AD (3,493 ADs vs. 4,617 controls) and PD (678 PDs vs. 712 controls) for association with disease risk (case-controls), age-at-diagnosis (cases) and brain gene expression levels (autopsied subjects).

Results

We found that rs156697 minor allele associates with significantly increased risk (odds ratio = 1.14, p = 0.038) in the older ADs with age-at-diagnosis > 80 years. The minor allele of GSTO1 rs4925 associates with decreased risk in familial PD (odds ratio = 0.78, p = 0.034). There was no other association with disease risk or age-at-diagnosis. The minor alleles of both GSTO SNPs associate with lower brain levels of GSTO2 (p = 4.7 × 10-11-1.9 × 10-27), but not GSTO1. Pathway analysis of significant genes in our brain expression GWAS, identified significant enrichment for glutathione metabolism genes (p = 0.003).

Conclusion

These results suggest that GSTO locus variants may lower brain GSTO2 levels and consequently confer AD risk in older age. Other glutathione metabolism genes should be assessed for their effects on AD and other chronic, neurologic diseases.  相似文献   

17.
Gout is a common disease caused by hyperuricemia, which shows elevated serum uric acid (SUA) levels. From a viewpoint of urate handling in humans, gout patients can be divided into those with renal overload (ROL) gout with intestinal urate underexcretion, and those with renal underexcretion (RUE) gout. Recent genome-wide association studies (GWAS) revealed an association between SUA and a variant in human monocarboxylate transporter 9 (MCT9/SLC16A9) gene. Although the function of MCT9 remains unclear, urate is mostly excreted via intestine and kidney where MCT9 expression is observed. In this study, we investigated the relationship between a variant of MCT9 and gout in 545 patients and 1,115 healthy volunteers. A missense variant of MCT9 (K258T), rs2242206, significantly increased the risk of ROL gout (p = 0.012), with odds ratio (OR) of 1.28, although it revealed no significant association with all gout cases (p = 0.10), non-ROL gout cases (p = 0.83), and RUE gout cases (p = 0.34). In any case groups and the control group, minor allele frequencies of rs2242206 were >0.40. Therefore, rs2242206 is a common missense variant and is revealed to have an association with ROL gout, indicating that rs2242206 relates to decreased intestinal urate excretion rather than decreased renal urate excretion. Our study provides clues to better understand the pathophysiology of gout as well as the physiological roles of MCT9.  相似文献   

18.
Deposition of crystallized monosodium urate (MSU) in joints as a result of hyperuricemia is a central risk factor for gout. However other factors must exist that control the progression from hyperuricaemia to gout. A previous genetic association study has implicated the toll-like receptor 4 (TLR4) which activates the NLRP3 inflammasome via the nuclear factor-κB signaling pathway upon stimulation by MSU crystals. The T-allele of single nucleotide polymorphism rs2149356 in TLR4 is a risk factor associated with gout in a Chinese study. Our aim was to replicate this observation in participants of European and New Zealand Polynesian (Māori and Pacific) ancestry. A total of 2250 clinically-ascertained prevalent gout cases and 13925 controls were used. Non-clinically-ascertained incident gout cases and controls from the Health Professional Follow-up (HPFS) and Nurses Health Studies (NHS) were also used. Genotypes were derived from genome-wide genotype data or directly obtained using Taqman. Logistic regression analysis was done including age, sex, diuretic exposure and ancestry as covariates as appropriate. The T-allele increased the risk of gout in the clinically-ascertained European samples (OR = 1.12, P = 0.012) and decreased the risk of gout in Polynesians (OR = 0.80, P = 0.011). There was no evidence for association in the HPFS or NHS sample sets. In conclusion TLR4 SNP rs2143956 associates with gout risk in prevalent clinically-ascertained gout in Europeans, in a direction consistent with previously published results in Han Chinese. However, with an opposite direction of association in Polynesians and no evidence for association in a non-clinically-ascertained incident gout cohort this variant should be analysed in other international gout genetic data sets to determine if there is genuine evidence for association.  相似文献   

19.

Introduction

Gout results from an innate immune response to monosodium urate (MSU) crystals deposited in joints. Increased very low-density lipoprotein (VLDL) has been associated with gout. The apolipoprotein B (apo B), which is present on VLDL, regulates neutrophil response to MSU crystals and has been positively associated with gout. Furthermore, the gene (A1CF) encoding the complementation factor for the APOB mRNA-editing enzyme is associated with urate levels. However, the relationship of apo B and VLDL with gout and hyperuricaemia (HU) is still unclear. Therefore, we tested the association of VLDL and apo B with HU and with gout compared to HU.

Methods

New Zealand European (n = 90) and Māori and Pacific Island (Polynesian) (n = 90) male gout case and control sample sets were divided into normouricaemia (NU), asymptomatic HU and gout groups. Size exclusion chromatography and enzyme-linked immunosorbant assay was used to measure VLDL and apo B. Multivariate logistic regression was used to assess the risk of gout and HU per unit change in VLDL and apo B.

Results

Increased levels of VLDL triglycerides (Tg) were observed in the gout sample set compared to NU and HU in Europeans (P = 1.8 × 10-6 and 1 × 10-3, respectively), but only compared to NU in Polynesians (P = 0.023). This increase was driven by increased number of VLDL particles in the European participants and by the Tg-enrichment of existing VLDL particles in the Polynesian participants. Each mmol/L increase in VLDL Tg was significantly associated with gout in the presence of HU in Europeans, with a similar trend in Polynesians (OR = 7.61, P = 0.011 and 2.84, P = 0.069, respectively). Each μmol/L increase in total apo B trended towards decreased risk of HU (OR = 0.47; P = 0.062) and, conversely, with increased risk of gout compared to HU (OR = 5.60; P = 0.004).

Conclusions

Increased VLDL Tg is associated with the risk of gout compared to HU. A genetic approach should be taken to investigate the possibility for causality of VLDL in gout. Apolipoprotein B may have pleiotropic effects in determining HU and gout.  相似文献   

20.
《PloS one》2015,10(6)

Background

Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.

Methods

In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.

Results

The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4).

Conclusion

These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号