首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The shell of the Japanese pearl oyster, Pinctada fucata, consists of two layers, the prismatic layer on the outside and the nacreous layer on the inside, both of which comprise calcium carbonate and organic matrices. Previous studies indicate that the nacreous organic matrix of the central layer of the framework surrounding the aragonite tablet is beta-chitin, but it remains unknown whether organic matrices in the prismatic layer contain chitin or not. In the present study, we identified chitin in the prismatic layer of the Japanese pearl oyster, Pinctada fucata, with a combination of Calcofluor White staining with IR and NMR spectral analyses. Furthermore, we cloned a cDNA encoding chitin synthase (PfCHS1) that produces chitin, contributing to the formation of the framework for calcification in the shell.  相似文献   

4.
Perlucin is an important functional protein that regulates shell and pearl formation. In this study, we cloned the perlucin gene from the freshwater pearl mussel Hyriopsis cumingii, designated as Hcperlucin. The full-length cDNA transcribed from the Hcperlucin gene was 1460 bp long, encoding a putative signal peptide of 20 amino acids and a mature protein of 141 amino acids. The mature Hcperlucin peptide contained six conserved cysteine residues and a carbohydrate recognition domain, similar to other members of the C-type lectin families. In addition, a “QPS” and an invariant “WND” motif near the C-terminal region were also found, which are extremely important for polysaccharide recognition and calcium binding of lectins. The mRNA of Hcperlucin was constitutively expressed in all tested H. cumingii tissues, with the highest expression levels observed in the mantle, adductor, gill and hemocytes. In situ hybridization was used to detect the presence of Hcperlucin mRNA in the mantle, and the result showed that the mRNA was specifically expressed in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the biosynthesis of the nacreous layer of the shell. The significant Hcperlucin mRNA expression was detected on day 14 post shell damage and implantation, suggesting that the Hcperlucin might be an important gene in shell nacreous layer and pearl formation. The change of perlucin expression in pearl sac also confirmed that the mantle transplantation results in a new expression pattern of perlucin genes in pearl sac cells that are required for pearl biomineralization. These findings could help better understanding the function of perlucin in the shell and pearl formation.  相似文献   

5.
Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium.  相似文献   

6.
Fang D  Xu G  Hu Y  Pan C  Xie L  Zhang R 《PloS one》2011,6(7):e21860
Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.  相似文献   

7.
Mantle can secret matrix proteins playing key roles in regulating the process of shell formation. The genes encoding lysine-rich matrix proteins (KRMPs) are one of the most highly expressed matrix genes in pearl oysters. However, the expression pattern of KRMPs is limited and the functions of them still remain unknown. In this study, we isolated and identified six new members of lysine-rich matrix proteins, rich in lysine, glycine and tyrosine, and all of them are basic matrix proteins. Combined with four members of the KRMPs previously reported, all these proteins can be divided into three subclasses according to the results of phylogenetic analyses: KRMP1–3 belong to subclass KPI, KRMP4–5 belong to KPII, and KRMP6–10 belong to KPIII. Three subcategories of lysine-rich matrix proteins are highly expressed in the D-phase, the larvae and adult mantle. Lysine-rich matrix proteins are involved in the shell repairing process and associated with the formation of the shell and pearl. What’s more, they can cause abnormal shell growth after RNA interference. In detail, KPI subgroup was critical for the beginning formation of the prismatic layer; both KPII and KPIII subgroups participated in the formation of prismatic layer and nacreous layer. Compared with different temperatures and salinity stimulation treatments, the influence of changes in pH on KRMPs gene expression was the greatest. Recombinant KRMP7 significantly inhibited CaCO3 precipitation, changed the morphology of calcite, and inhibited the growth of aragonite in vitro. Our results are beneficial to understand the functions of the KRMP genes during shell formation.  相似文献   

8.
Aspein is one of the unusually acidic shell matrix proteins originally identified from the pearl oyster Pinctada fucata. Aspein is thought to play important roles in the shell formation, especially in calcite precipitation in the prismatic layer. In this study, we identified Aspein homologs from three closely related pterioid species: Pinctada maxima, Isognomon perna, and Pteria penguin. Our immunoassays showed that they are present in the calcitic prismatic layer but not in the aragonitic nacreous layer of the shells. Sequence comparison showed that the Ser-Glu-Pro and the Asp-Ala repeat motifs are conserved among these Aspein homologs, indicating that they are functionally important. All Aspein homologs examined share the Asp-rich D-domain, suggesting that this domain might have a very important function in calcium carbonate formation. However, sequence analyses showed a significantly high level of variation in the arrangement of Asp in the D-domain even among very closely related species. This observation suggests that specific arrangements of Asp are not required for the functions of the D-domain.  相似文献   

9.
10.
For pearl culture, the pearl oyster is forced open and a nucleus is implanted into the gonad with a mantle graft. The outer mantle epithelial cells of the implanted mantle graft elongate and surrounding the nucleus a pearl sac is formed. Shell matrix proteins secreted by the pearl sac play an important role in the regulation of pearl formation. Recently, seven shell matrix proteins were identified from the pearl oyster Pinctada fucata. However, there is a paucity of information on the function of these proteins and their gene expression patterns. Our study aims to elucidate the relationship between pearl type, quality, and gene expression patterns of six shell matrix proteins (msi60, n16, nacrein, msi31, prismalin-14, and aspein) in the pearl sac based on real-time PCR analysis. After culturing for about 2 months, the pearl sac tissues were collected from 22 individuals: 12 with high quality (HP), nine with low quality (LP), and one with organic (ORG) pearl formation. The surface of each of the 12 HP pearls was composed only of a nacreous layer; in contrast, that of the nine LP pearls was composed of nacreous and prismatic layers. The six target gene expressions were detected in all individuals. However, delta threshold cycle (ΔC T) for msi31 was significantly higher in the HP than in the LP individuals (Mann–Whitney’s U test, p = 0.02). This means that the relative expression level of msi31, which constitutes the framework of the prismatic layer, was higher in the LP than in the HP individuals.  相似文献   

11.
Fang D  Pan C  Lin H  Lin Y  Xu G  Zhang G  Wang H  Xie L  Zhang R 《PloS one》2012,7(4):e35715
Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes.  相似文献   

12.
褶纹冠蚌光珠与骨珠珍珠囊差异的研究   总被引:7,自引:0,他引:7  
运用多种组织化学方法和电镜技术研究了褶纹冠蚌光珠和骨珠珍珠囊表皮细胞的形态结构、分泌物性质和功能等方面的差异。结果表明:骨珠珍珠囊表皮细胞合成和分泌珍珠前体物质的能力较光珠的强,故骨珠的形成速度比光珠快;光珠和骨珠珍珠囊表皮细胞合成和分泌的蛋白质的差异决定了光珠和骨珠的形成;光珠和骨珠珍珠囊表皮细胞的形态结构特征差异可作为检验和预测人工培育珍珠质量的细胞学标准。  相似文献   

13.

Background

Color polymorphism in the nacre of pteriomorphian bivalves is of great interest for the pearl culture industry. The nacreous layer of the Polynesian black-lipped pearl oyster Pinctada margaritifera exhibits a large array of color variation among individuals including reflections of blue, green, yellow and pink in all possible gradients. Although the heritability of nacre color variation patterns has been demonstrated by experimental crossing, little is known about the genes involved in these patterns. In this study, we identify a set of genes differentially expressed among extreme color phenotypes of P. margaritifera using a suppressive and subtractive hybridization (SSH) method comparing black phenotypes with full and half albino individuals.

Results

Out of the 358 and 346 expressed sequence tags (ESTs) obtained by conducting two SSH libraries respectively, the expression patterns of 37 genes were tested with a real-time quantitative PCR (RT-qPCR) approach by pooling five individuals of each phenotype. The expression of 11 genes was subsequently estimated for each individual in order to detect inter-individual variation. Our results suggest that the color of the nacre is partially under the influence of genes involved in the biomineralization of the calcitic layer. A few genes involved in the formation of the aragonite tablets of the nacre layer and in the biosynthesis chain of melanin also showed differential expression patterns. Finally, high variability in gene expression levels were observed within the black phenotypes.

Conclusions

Our results revealed that three main genetic processes were involved in color polymorphisms: the biomineralization of the nacreous and calcitic layers and the synthesis of pigments such as melanin, suggesting that color polymorphism takes place at different levels in the shell structure. The high variability of gene expression found within black phenotypes suggests that the present work should serve as a basis for future studies exploring more thoroughly the expression patterns of candidate genes within black phenotypes with different dominant iridescent colors.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1776-x) contains supplementary material, which is available to authorized users.  相似文献   

14.
Understanding the molecular composition is of great interest for both nacre formation mechanism and biomineralization in mollusk shell. A cDNA clone encoding an MSI31 relative, termed MSI7 because of its estimated molecular mass of 7.3 kDa, was isolated from the pearl oyster, Pinctada fucata. This novel protein shares similarity with MSI31, a prismatic framework protein of P. fucata. It is peculiar that MSI7 is much shorter in size, harboring only the Gly-rich sequence that has been proposed to be critical for Ca(2+) binding. In situ hybridization result showed that MSI7 mRNA was expressed specifically at the folds and outer epithelia of the mantle, indicating that MSI7 participates in the framework formation of both the nacreous layer and prismatic layer. In vitro experiment on the function of MSI7 suggested that it accelerates the nucleation and precipitation of CaCO(3). Taken together, we have identified a novel matrix protein of the pearl oyster, which may play an important role in determining the texture of nacre.  相似文献   

15.
Nucleated pearls are produced by molluscs of the Pinctada genus through the biomineralisation activity of the pearl sac tissue within the recipient oyster. The pearl sac originates from graft tissue taken from the donor oyster mantle and its functioning is crucial in determining key factors that impact pearl quality surface characteristics. The specific role of related gene regulation during gem biogenesis was unknown, so we analysed the expression profiles of eight genes encoding nacreous (PIF, MSI60, PERL1) or prismatic (SHEM5, PRISM, ASP, SHEM9) shell matrix proteins or both (CALC1) in the pearl sac (N?=?211) of Pinctada margaritifera during pearl biogenesis. The pearls and pearl sacs analysed were from a uniform experimental graft with sequential harvests at 3, 6 and 9 months post-grafting. Quality traits of the corresponding pearls were recorded: surface defects, surface deposits and overall quality grade. Results showed that (1) the first 3 months of culture seem crucial for pearl quality surface determination and (2) all the genes (SHEM5, PRISM, ASP, SHEM9) encoding proteins related to calcite layer formation were over-expressed in the pearl sacs that produced low pearl surface quality. Multivariate regression tree building clearly identified three genes implicated in pearl surface quality, SHEM9, ASP and PIF. SHEM9 and ASP were clearly implicated in low pearl quality, whereas PIF was implicated in high quality. Results could be used as biomarkers for genetic improvement of P. margaritifera pearl quality and constitute a novel perspective to understanding the molecular mechanism of pearl formation.  相似文献   

16.
The production of a cultured pearl is the result of a complex interplay between the donor and recipient oysters. However, there is a paucity of information on the relationship between donor and recipient oyster gene expression patterns and pearl quality. Shell matrix proteins affect not only the formation of the shell, but also that of the pearls. We compared the gene expression patterns of five shell matrix proteins (msi60, nacrein, msi31, prismalin-14, and aspein) in the mantle edge (ME), which forms the prismatic layer, and the mantle center (MC), which forms the nacreous layer, between high- (HP) and low quality pearl- (LP) producing recipient oysters. After culturing for about two months, ME and MC tissues were collected from nine recipient oysters: four with HP, five with LP. In the ME, the average threshold cycle (ΔC(T)) for aspein was higher in HP than in LP (t-test, p = 0.03). Additionally, in the MC, the average ΔC(T) for msi60 was lower in HP than in LP (p = 0.06). This means the relative expression level of msi60 in the mantle of HP was higher than that of LP, and expression level of aspein in the mantle of HP was lower than that of LP. Pearl quality was closely related to the expression patterns of shell matrix protein genes of recipient oysters.  相似文献   

17.
Samples of the unionid bivalve Elliptio complanata were collected from the channel of the freshwater Saint John River, from Fredericton, New Brunswick, Canada. Scanning electron microscopy imaging of prepared shell samples revealed an assemblage of microborings. No borings are noted on the periostracum or prismatic shell layers. Boring structures are instead confined to the underlying nacreous aragonitic shell material, together with its associated organic conchiolin layers. Three main styles of boring are encountered, encompassing both predominantly surficial structures and penetrative tubular borings. Surficial structures are represented by a polygonal network on an exposed conchiolin shell layer. The penetrative borings take two forms, one being simple unbranched tubes, steeply aligned (perpendicular to the shell surface) and traversing the full thickness of the nacreous shell layer. The other penetrative boring style, again occurring within the nacreous layer, comprises a complex irregular network of randomly oriented rarely branching tubular borings. Borings generally display diameters of micron scale. Biofilm and extracellular polymeric substances, with bacterial, diatomaceous and filamentous components are also observed, often displaying a close association with both the borings and the conchiolin layers within the shell. The formation of the borings may be attributed to cyanobacteria, cyanophyte or fungal progenitors.  相似文献   

18.
几丁质是软体动物贝壳有机框架的重要成分,其代谢在贝壳矿化中发挥重要作用。β-N-乙酰-己糖胺酶(HEX, EC3.2.1.52)是几丁质代谢的关键水解酶。为了探究马氏珠母贝β-N-乙酰-己糖胺酶(Pm HEX)(登录号:MF555152)在贝壳形成中的作用,本研究利用原位杂交(ISH)技术检测Pm HEX基因在外套膜的定位,结果显示Pm HEX的mRNA主要分布于外侧褶的外上皮细胞、中褶的内侧上皮细胞和内褶上皮细胞。利用RNAi技术抑制Pm HEX表达后,Pm HEX在边缘区和套膜区的表达量均显著下调;SEM观察发现实验组的棱柱层和珍珠层的微观结构都出现不同程度的紊乱。综上所述,Pm HEX可能通过影响几丁质代谢,参与马氏珠母贝贝壳棱柱层和珍珠层的矿化过程。  相似文献   

19.
Light microscopy, transmission electron microscopy, scanning electron microscopy, various histochemical procedures for the localization of mineral ions, and analytical electron microscopy have been used to investigate the mechanisms inherent at the mantle edge for shell formation and growth in Amblema plicata perplicata, Conrad. The multilayered periostracum, its component laminae formed from the epithelia lining either the periostracal groove or the outer mantle epithelium (of the periostracal cul de sac), appears to play the major regulatory and organizational role in the formation of the component mineralized layers of the shell. Thus, the inner layer of the periostracum traps and binds calcium and subsequently gives rise to matricial proteinaceous fibrils or lamellar extensions which serve as nucleation templates for the formation and orientation of the crystalline subunits (rhombs) in the forming nacreous layer. Simultaneously, the middle periostracal layer furnishes or provides the total ionic calcium pool and the matricial organization necessary for the production of the spherical subunits which pack the matricial ‘bags’ of the developing prismatic layer. The outer periostracal layer appears to be a supportive structure, possibly responsible for the mechanical deformations which occur in the other laminae of the periostracum. The functional differences in the various layers of the periostracum are related to peculiar morphological variables (foliations, vacuolizations, columns) inherent in the structure and course of this heterogeneous (morphologically and biochemically) unit. From this study, using the dynamic mantle edge as a morphological model system, we have been able to identify at least six interrelated events which culminate in the production of the mature mineralized shell layers (nacre, prisms) at the growing edge of this fresh-water mussel.  相似文献   

20.
To study the function of pearl oyster matrix proteins in nacreous layer biomineralization in vivo, we examined the deposition on pearl nuclei and the expression of matrix protein genes in the pearl sac during the early stage of pearl formation. We found that the process of pearl formation involves two consecutive stages: (i) irregular calcium carbonate (CaCO(3)) deposition on the bare nucleus and (ii) CaCO(3) deposition that becomes more and more regular until the mature nacreous layer has formed on the nucleus. The low-expression level of matrix proteins in the pearl sac during periods of irregular CaCO(3) deposition suggests that deposition may not be controlled by the organic matrix during this stage of the process. However, significant expression of matrix proteins in the pearl sac was detected by day 30-35 after implantation. On day 30, a thin layer of CaCO(3), which we believe was amorphous CaCO(3), covered large aragonites. By day 35, the nacreous layer had formed. The whole process is similar to that observed in shells, and the temporal expression of matrix protein genes indicated that their bioactivities were crucial for pearl development. Matrix proteins controlled the crystal phase, shape, size, nucleation and aggregation of CaCO(3) crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号