首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The matrilins form a family of oligomeric extracellular adaptor proteins that are most strongly expressed in cartilage but also present in many other extracellular matrices. Matrilins bind to different types of collagen fibrils, to other noncollagenous proteins and to aggrecan. They thereby support matrix assembly by connecting fibrillar components and mediating interactions between these and the aggrecan gel. The binding avidity of a matrilin can be varied by alternative splicing, proteolytic processing and formation of homo- and heterooligomers. Such changes in matrilin structure may lead to a modulation of extracellular matrix assembly. Some matrilins bind weakly to α1β1 integrin and cell surface proteoglycans, but even though matrilins play a role in mechanotransduction and matrilin-3 activates the expression of osteoarthritis-associated genes the physiological relevance of matrilin-cell interactions is unclear. Matrilin knockout mice do not display pronounced phenotypes, which points to a redundancy within the protein family or with functionally related proteins. In man, dominant mutations in the von Willebrand factor A like domain of matrilin-3 lead to a protein retention in the endoplasmic reticulum that causes multiple epiphyseal dysplasia by initiating a cell stress response. In contrast, a mutation in an EGF domain of matrilin-3 that is associated with hand osteoarthritis and disc degeneration does not interfere with secretion but instead with extracellular assembly of matrix structures. In this review we summarize such information on matrilin structure and function that we believe is important for the understanding of extracellular matrix assembly and for deciphering pathophysiological mechanisms in diseases causing skeletal malformations or cartilage degeneration.  相似文献   

2.
The matrilins: a novel family of oligomeric extracellular matrix proteins.   总被引:8,自引:0,他引:8  
The matrilin family at present has four members that all share a structure made up of von Willebrand factor A domains, epidermal growth factor-like domains and a coiled coil alpha-helical module. The first member of the family, matrilin-1 (previously called cartilage matrix protein or CMP), is expressed mainly in cartilage. Matrilin-3 has a similar tissue distribution, while matrilin-2 and -4 occur in a wide variety of extracellular matrices. Matrilin-1 is associated with cartilage proteoglycans as well as being a component of both collagen-dependent and collagen-independent fibrils and on the basis of the related structures other matrilins may play similar roles. The matrilin genes are strictly and differently regulated and their expression may serve as markers for cellular differentiation.  相似文献   

3.
Matrilin-3 is a recently identified matrix protein of cartilage that shows sequence homology to matrilin-1 (cartilage matrix protein or CMP). Here we identify and characterize the molecular properties of matrilin-3 from human growth cartilage by immunochemical and mass spectrometry methods. Extracts of fetal skeletal cartilage were resolved by SDS-PAGE and candidate matrilin subunits were identified by electrospray mass spectrometry of tryptic peptides. Matrilin-3 and matrilin-1 were both present in disulfide-bonded tetrameric components. Polyclonal antisera to synthetic peptides specific to each subunit confirmed the identities by Western blotting and further demonstrated the existence of several forms of tetramer. A homotetramer (matrilin-3)4 and more than one species of heterotetramer containing matrilin-3 and matrilin-1 chains were resolved. Immunohistochemistry of tissue sections confirmed that both matrilin-1 and matrilin-3 are widely codistributed throughout human skeletal growth cartilage.  相似文献   

4.
Matrilin-4 is the most recently identified member of the matrilin family of von Willebrand factor A-like domain containing extracellular matrix adapter proteins. Full-length matrilin-4 was expressed in 293-EBNA cells, purified using affinity tags, and subjected to biochemical characterization. The largest oligomeric form of recombinantly expressed full-length matrilin-4 is a trimer as shown by electron microscopy, SDS-polyacrylamide gel electrophoresis, and mass spectrometry. Proteolytically processed matrilin-4 species were also detected. The cleavage occurs in the short linker region between the second von Willebrand factor A-like domain and the coiled-coil domain leading to the release of large fragments and the formation of dimers and monomers of intact subunits still containing a trimeric coiled-coil. In immunoblots of calvaria extracts similar degradation products could be detected, indicating that a related proteolytic processing occurs in vivo. Matrilin-4 was first observed at day 7.5 post-coitum in mouse embryos. Affinity-purified antibodies detect a broad expression in dense and loose connective tissue, bone, cartilage, central and peripheral nervous systems and in association with basement membranes. In the matrix formed by cultured primary embryonic fibroblasts, matrilin-4 is found in a filamentous network connecting individual cells.  相似文献   

5.
Matrilin-3 is dispensable for mouse skeletal growth and development   总被引:7,自引:0,他引:7  
Matrilin-3 belongs to the matrilin family of extracellular matrix (ECM) proteins and is primarily expressed in cartilage. Mutations in the gene encoding human matrilin-3 (MATN-3) lead to autosomal dominant skeletal disorders, such as multiple epiphyseal dysplasia (MED), which is characterized by short stature and early-onset osteoarthritis, and bilateral hereditary microepiphyseal dysplasia, a variant form of MED characterized by pain in the hip and knee joints. To assess the function of matrilin-3 during skeletal development, we have generated Matn-3 null mice. Homozygous mutant mice appear normal, are fertile, and show no obvious skeletal malformations. Histological and ultrastructural analyses reveal endochondral bone formation indistinguishable from that of wild-type animals. Northern blot, immunohistochemical, and biochemical analyses indicated no compensatory upregulation of any other member of the matrilin family. Altogether, our findings suggest functional redundancy among matrilins and demonstrate that the phenotypes of MED disorders are not caused by the absence of matrilin-3 in cartilage ECM.  相似文献   

6.
The matrilins are a family of four noncollagenous oligomeric extracellular matrix proteins with a modular structure. Matrilins can act as adapters which bridge different macromolecular networks. We therefore investigated the effect of collagen IX deficiency on matrilin-3 integration into cartilage tissues. Mice harboring a deleted Col9a1 gene lack synthesis of a functional protein and produce cartilage fibrils completely devoid of collagen IX. Newborn collagen IX knockout mice exhibited significantly decreased matrilin-3 and cartilage oligomeric matrix protein (COMP) signals, particularly in the cartilage primordium of vertebral bodies and ribs. In the absence of collagen IX, a substantial amount of matrilin-3 is released into the medium of cultured chondrocytes instead of being integrated into the cell layer as in wild-type and COMP-deficient cells. Gene expression of matrilin-3 is not affected in the absence of collagen IX, but protein extraction from cartilage is greatly facilitated. Matrilin-3 interacts with collagen IX-containing cartilage fibrils, while fibrils from collagen IX knockout mice lack matrilin-3, and COMP-deficient fibrils exhibit an intermediate integration. In summary, the integration of matrilin-3 into cartilage fibrils occurs both by a direct interaction with collagen IX and indirectly with COMP serving as an adapter. Matrilin-3 can be considered as an interface component, capable of interconnecting macromolecular networks and mediating interactions between cartilage fibrils and the extrafibrillar matrix.  相似文献   

7.
Mutations in matrilin-3 result in multiple epiphyseal dysplasia, which is characterized by delayed and irregular bone growth and early onset osteoarthritis. The majority of disease-causing mutations are located within the beta-sheet of the single A-domain of matrilin-3, suggesting that they disrupt the structure and/or function of this important domain. Indeed, the expression of mutant matrilin-3 results in its intracellular retention within the rough endoplasmic reticulum of cells, where it elicits an unfolded protein response. To understand the folding characteristics of the matrilin-3 A-domain we determined its structure using CD, analytical ultracentrifugation, and dual polarization interferometry. This study defined novel structural features of the matrilin-3 A-domain and identified a conformational change induced by the presence or the absence of Zn(2+). In the presence of Zn(2+) the A-domain adopts a more stable "tighter" conformation. However, after the removal of Zn(2+) a potential structural rearrangement of the metal ion-dependent adhesion site motif occurs, which leads to a more "relaxed" conformation. Finally, to characterize the interactions of the matrilin-3 A-domain we performed binding studies on a BIAcore using type II and IX collagen and cartilage oligomeric matrix protein. We were able to demonstrate that it binds to type II and IX collagen and cartilage oligomeric matrix protein in a Zn(2+)-dependent manner. Furthermore, we have also determined that the matrilin-3 A-domain appears to bind exclusively to the COL3 domain of type IX collagen and that this binding is abolished in the presence of a disease causing mutation in type IX collagen.  相似文献   

8.
Matrilin-3 is a recently identified member of the superfamily of proteins containing von Willebrand factor A-like domains and is able to form hetero-oligomers with matrilin-1 (cartilage matrix protein) via a C-terminal coiled-coil domain. Full-length matrilin-3 and a fragment lacking the assembly domain were expressed in 293-EBNA cells, purified, and subjected to biochemical characterization. Recombinantly expressed full-length matrilin-3 occurs as monomers, dimers, trimers, and tetramers, as detected by electron microscopy and SDS-polyacrylamide gel electrophoresis, whereas matrilin-3, purified from fetal calf cartilage, forms homotetramers as well as hetero-oligomers of variable stoichiometry with matrilin-1. In the matrix formed by cultured chondrosarcoma cells, matrilin-3 is found in a filamentous, collagen-dependent network connecting cells and in a collagen-independent pericellular network. Affinity-purified antibodies detect matrilin-3 expression in a variety of mouse cartilaginous tissues, such as sternum, articular, and epiphyseal cartilage, and in the cartilage anlage of developing bones. It is found both inside the lacunae and in the interterritorial matrix of the resting, proliferating, hypertrophic, and calcified cartilage zones, whereas the expression is lower in the superficial articular cartilage. In trachea and in costal cartilage of adult mice, an expression was seen in the perichondrium. Furthermore, matrilin-3 is found in bone, and its expression is, therefore, not restricted to chondroblasts and chondrocytes.  相似文献   

9.
Matrilin-1 is expressed predominantly in cartilage and co-localizes with matrilin-3 with which it can form hetero-oligomers. We recently described novel structural and functional features of the matrilin-3 A-domain (M3A) and demonstrated that it bound with high affinity to type II and IX collagens. Interactions preferentially occurred in the presence of Zn2+ suggesting that matrilin-3 has acquired a requirement for specific metal ions for activation and/or molecular associations. To understand the interdependence of matrilin-1/-3 hetero-oligomers in extracellular matrix (ECM) interactions, we have extended these studies to include the two matrilin-1 A-domains (i.e. M1A1 and M1A2 respectively). In this study we have identified new characteristics of the matrilin-1 A-domains by describing their glycosylation state and the effect of N-glycan chains on their structure, thermal stability, and protein-protein interactions. Initial characterization revealed that N-glycosylation did not affect secretion of these two proteins, nor did it alter their folding characteristics. However, removal of the glycosylation decreased their thermal stability. We then compared the effect of different cations on binding between both M1A domains and type II and IX collagens and showed that Zn2+ also supports their interactions. Finally, we have demonstrated that both M1A1 domains and biglycan are essential for the association of the type II·VI collagen complex. We predict that a potential role of the matrilin-1/-3 hetero-oligomer might be to increase multivalency, and therefore the ability to connect various ECM components. Differing affinities could act to regulate the integrated network, thus coordinating the organization of the macromolecular structures in the cartilage ECM.  相似文献   

10.
Matrilins are putative adaptor proteins of the extracellular matrix (ECM) which can form both collagen-dependent and collagen-independent filamentous networks. While all known matrilins (matrilin-1, -2, -3, and -4) are expressed in cartilage, only matrilin-2 and matrilin-4 are abundant in non-skeletal tissues. To clarify the biological role of matrilin-2, we have developed a matrilin-2-deficient mouse strain. Matrilin-2 null mice show no gross abnormalities during embryonic or adult development, are fertile, and have a normal lifespan. Histological and ultrastructural analyses indicate apparently normal structure of all organs and tissues where matrilin-2 is expressed. Although matrilin-2 co-localizes with matrilin-4 in many tissues, Northern hybridization, semiquantitative RT-PCR, immunohistochemistry and biochemical analysis reveal no significant alteration in the steady-state level of matrilin-4 expression in homozygous mutant mice. Immunostaining of wild-type and mutant skin samples indicate no detectable differences in the expression and deposition of matrilin-2 binding partners including collagen I, laminin-nidogen complexes, fibrillin-2 and fibronectin. In addition, electron microscopy reveals an intact basement membrane at the epidermal-dermal junction and normal organization of the dermal collagen fibrils in mutant skin. These data suggest that either matrilin-2 and matrilin-2-mediated matrix-matrix interactions are dispensable for proper ECM assembly and function, or that they are efficiently compensated by other matrix components including wild-type levels of matrilin-4.  相似文献   

11.
The expression of matrilin-1, -2 and -3 was studied in the heart and limb during mouse development. Matrilin-1 is transiently expressed in the heart between days 9.5 and 14.5 p.c. Matrilin-2 expression was detected in the heart from day 10.5 p.c. onwards. In the developing limb bud, both matrilin-1 and -3 were observed first at day 12.5 p.c. Throughout development matrilin-3 expression was strictly limited to cartilage, while matrilin-1 was also found in some other forms of connective tissue. Matrilin-2, albeit present around hypertrophic chondrocytes in the growth plate, was mainly expressed in non-skeletal structures. The complementary, but in part overlapping, expression of matrilins indicates the possibility for both redundant and unique functions among the members of this novel family of extracellular matrix proteins.  相似文献   

12.
Matrilins constitute a family of four oligomeric extracellular proteins that are involved in the development and homeostasis of cartilage and bone. To reveal their homo- and heterotypic oligomerization propensities, we analyzed the four human matrilin coiled-coil domains by biochemical and biophysical methods. These studies not only confirmed the homo- and heterotypic oligomerization states reported for the full-length proteins but revealed seven novel matrilin isoforms. Specific heterotrimeric interactions of variable chain stoichiometries were observed between matrilin-1 and matrilin-2, matrilin-1 and matrilin-4, and matrilin-2 and matrilin-4. In addition, matrilin-1 formed two different specific heterotetramers with matrilin-3. Interestingly, a distinct heterotrimer consisting of three different chains was formed between matrilin-1, matrilin-2, and matrilin-4. No interactions, however, were observed between matrilin-2 and matrilin-3 or between matrilin-3 and matrilin-4. Both homo- and heterotypic oligomers folded into parallel disulfide-linked structures, although coiled-coil formation was not dependent on disulfide bridge formation. Our results indicate that the heterotypic preferences seen for the matrilin coiled-coil domains are the result of the packing of the hydrophobic core rather than ionic interactions. Mass spectrometry revealed that the concentrations of the individual chains statistically determined the stoichiometry of the heteromers, suggesting that formation of the different matrillin chain combinations is controlled by expression levels.  相似文献   

13.
Matrilin 1, or cartilage matrix protein, is a member of a novel family of extracellular matrix proteins. To date, four members of the family have been identified, but their biological role is unknown. Matrilin 1 and matrilin 3 are expressed in cartilage, while matrilin 2 and matrilin 4 are present in many tissues. Here we describe the generation and analysis of mice carrying a null mutation in the Crtm gene encoding matrilin 1. Anatomical and histological studies demonstrated normal development of homozygous mutant mice. Northern blot and biochemical analyses show no compensatory up-regulation of matrilin 2 or 3 in the cartilage of knockout mice. Although matrilin 1 interacts with the collagen II and aggrecan networks of cartilage, suggesting that it may play a role in cartilage tissue organization, studies of collagen extractability indicated that collagen fibril maturation and covalent cross-linking were unaffected by the absence of matrilin 1. Ultrastructural analysis did not reveal any abnormalities of matrix organization. These data suggest that matrilin 1 is not critically required for cartilage structure and function and that matrilin 1 and matrilin 3 may have functionally redundant roles.  相似文献   

14.
We determined the distributions of the small proteoglycans biglycan and decorin and the glycoprotein matrilin-1 (cartilage matrix protein) during development and aging of articular cartilage in the rabbit knee joint. Before cavitation, the matrices of the interzone and the adjacent epiphyseal cartilage do not contain biglycan or decorin, but some chondrocytes express their mRNAs. Matrilin-1 is found only in the deeper epiphyseal cartilage. After cavitation, biglycan and decorin are detected in the presumptive articular cartilage, but there is no matrilin-1. All are present in the underlying epiphyseal cartilage. In the neonate, the epiphyseal cartilage is ossified and the articular cartilage becomes a discrete layer. Biglycan and decorin accumulate in the articular cartilage, but matrilin-1 remains confined to the residual epiphyseal cartilage. In the adult, the distributions of biglycan and decorin are highly variable. Decorin tends to be confined to the central region; matrilin-1 is absent. The findings indicate that the articular and epiphyseal cartilages are different from the earliest developmental stages. The epiphyseal cartilage can be identified by its possession of matrilin-1. Epiphyseal cartilage is removed during development to leave the articular cartilage. The relationships between the distributions of decorin and matrilin-1 and the fibrillar collagens are discussed. (J Histochem Cytochem 47:1603-1615, 1999)  相似文献   

15.
The biomechanical characteristics of septal cartilage depend strongly on the distinct extracellular matrix of cartilage tissue; therefore, it is essential that the components of this matrix are identified and understood. Cartilage oligomeric matrix protein (COMP) and matrilin-3 are localised in articular cartilage. This study was the first to examine all subtypes of mature human nasal cartilages (alar, triangular and septal) with specific attention to the distribution of COMP and matrilin-3. Three whole fresh-frozen noses from human donors were dissected, and exemplary biopsies were examined using histochemical staining (haematoxylin and eosin and Alcian blue) and immunohistochemistry (collagen II, COMP and matrilin-3). The following three zones within the nasal cartilage were identified: superficial, intermediate and central. COMP was detected as highest in the intermediate zones in all three subtypes of nasal cartilage, whereas matrilin-3 was detected with pericellular deposition mainly within septal cartilage predominantly in the superficial zones. The distinct staining patterns of COMP and matrilin-3 underscore the different functional roles of both proteins in nasal cartilage. According to the literature, COMP might be involved with collagen II in the formation of networks, whereas matrilin-3 is reported to prevent ossification or regulate mechanosensitivity. The predominant staining observed in septal cartilage suggests matrilin-3’s modulatory role because of its presence in the osteochondral junctional zone and given that the biomechanical load in septal cartilage is different from that in alar or triangular cartilage. In conclusion, COMP and matrilin-3 were detected in mature human nasal cartilage but displayed different staining patterns that might be explained by the functional roles of the respective matrix protein; however, further research is necessary to identify and define the functional aspects of this morphological difference.  相似文献   

16.
Native supramolecular assemblies containing collagen VI microfibrils and associated extracellular matrix proteins were isolated from Swarm rat chondrosarcoma tissue. Their composition and spatial organization were characterized by electron microscopy and immunological detection of molecular constituents. The small leucine-rich repeat (LRR) proteoglycans biglycan and decorin were bound to the N-terminal region of collagen VI. Chondroadherin, another member of the LRR family, was identified both at the N and C termini of collagen VI. Matrilin-1, -3, and -4 were found in complexes with biglycan or decorin at the N terminus. The interactions between collagen VI, biglycan, decorin, and matrilin-1 were studied in detail and revealed a biglycan/matrilin-1 or decorin/matrilin-1 complex acting as a linkage between collagen VI microfibrils and aggrecan or alternatively collagen II. The complexes between matrilin-1 and biglycan or decorin were also reconstituted in vitro. Colocalization of collagen VI and the different ligands in the pericellular matrix of cultured chondrosarcoma cells supported the physiological relevance of the observed interactions in matrix assembly.  相似文献   

17.
We have isolated a cDNA clone for human matrilin-3 from a cartilage-specific cDNA library. The polypeptide predicted from the nucleotide sequence of this clone shared 83% identity with matrilin-3 from mouse and 61% with that from chicken. It was composed of 486 amino acid residues that were arranged in seven domains: a signal peptide, a von Willebrand factor A domain, four EGF repeats, and an α-helical region. The gene for human matrilin-3 (MATN3) was assigned to chromosome region 2p24–p23. The corresponding mRNA of 2.8 kb was expressed in every type of cartilage investigated thus far. It was also producedin vitroby primary chondrocytes isolated from articular cartilage. However, dedifferentiated chondrocytes of the third passage did not express it at all. Matrilin-3 might therefore serve as a marker for the differentiation state of chondrocytes.  相似文献   

18.
19.
The endoplasmic reticulum is the site of synthesis and folding of secretory proteins and is sensitive to changes in the internal and external environment of the cell. Both physiological and pathological conditions may perturb the function of the endoplasmic reticulum, resulting in endoplasmic reticulum stress. The chondrocyte is the only resident cell found in cartilage and is responsible for synthesis and turnover of the abundant extracellular matrix and may be sensitive to endoplasmic reticulum stress. Here we report that glucose withdrawal, tunicamycin, and thapsigargin induce up-regulation of GADD153 and caspase-12, two markers of endoplasmic reticulum stress, in both primary chondrocytes and a chondrocyte cell line. Other agents such as interleukin-1beta or tumor necrosis factor alpha induced a minimal or no induction of GADD153, respectively. The endoplasmic reticulum stress resulted in decreased chondrocyte growth based on cell counts, up-regulation of p21, and decreased PCNA expression. In addition, perturbation of endoplasmic reticulum function resulted in decreased accumulation of an Alcian Blue positive matrix by chondrocytes and decreased expression of type II collagen at the protein level. Further, quantitative real-time PCR was used to demonstrate a down-regulation of steady state mRNA levels coding for aggrecan, collagen II, and link protein in chondrocytes exposed to endoplasmic reticulum stress-inducing conditions. Ultimately, endoplasmic reticulum stress resulted in chondrocyte apoptosis, as evidenced by DNA fragmentation and annexin V staining. These findings have potentially important implications regarding consequences of endoplasmic reticulum stress in cartilage biology.  相似文献   

20.
Matrilin-4是非胶原性细胞外基质蛋白家族的一员,广泛分布于疏松和致密结缔组织、皮肤和消化道上皮组织、骨、软骨、血管壁和神经系统。因其广泛的分布及特异性表达,使其成为一些疾病的致病因子,多种细胞信号途经可通过调节matrilin-4的表达调控细胞外基质的性能,进而影响疾病的发生、发展。随着近年来对matrilin-4的深入研究,可能为某些疾病的治疗提供新的思路。本文总结了matrilin-4在相关领域的最新研究进展,并对matrilin-4的基因结构,与家族其他成员的关系以及在疾病中的作用作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号